ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssn0 Unicode version

Theorem ssn0 3502
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
ssn0  |-  ( ( A  C_  B  /\  A  =/=  (/) )  ->  B  =/=  (/) )

Proof of Theorem ssn0
StepHypRef Expression
1 sseq0 3501 . . . 4  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
21ex 115 . . 3  |-  ( A 
C_  B  ->  ( B  =  (/)  ->  A  =  (/) ) )
32necon3d 2419 . 2  |-  ( A 
C_  B  ->  ( A  =/=  (/)  ->  B  =/=  (/) ) )
43imp 124 1  |-  ( ( A  C_  B  /\  A  =/=  (/) )  ->  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    =/= wne 2375    C_ wss 3165   (/)c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator