ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssn0 Unicode version

Theorem ssn0 3451
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
ssn0  |-  ( ( A  C_  B  /\  A  =/=  (/) )  ->  B  =/=  (/) )

Proof of Theorem ssn0
StepHypRef Expression
1 sseq0 3450 . . . 4  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
21ex 114 . . 3  |-  ( A 
C_  B  ->  ( B  =  (/)  ->  A  =  (/) ) )
32necon3d 2380 . 2  |-  ( A 
C_  B  ->  ( A  =/=  (/)  ->  B  =/=  (/) ) )
43imp 123 1  |-  ( ( A  C_  B  /\  A  =/=  (/) )  ->  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    =/= wne 2336    C_ wss 3116   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator