ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssn0 GIF version

Theorem ssn0 3505
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
ssn0 ((𝐴𝐵𝐴 ≠ ∅) → 𝐵 ≠ ∅)

Proof of Theorem ssn0
StepHypRef Expression
1 sseq0 3504 . . . 4 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)
21ex 115 . . 3 (𝐴𝐵 → (𝐵 = ∅ → 𝐴 = ∅))
32necon3d 2421 . 2 (𝐴𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅))
43imp 124 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐵 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wne 2377  wss 3168  c0 3462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3170  df-in 3174  df-ss 3181  df-nul 3463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator