ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssn0 GIF version

Theorem ssn0 3467
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
ssn0 ((𝐴𝐵𝐴 ≠ ∅) → 𝐵 ≠ ∅)

Proof of Theorem ssn0
StepHypRef Expression
1 sseq0 3466 . . . 4 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)
21ex 115 . . 3 (𝐴𝐵 → (𝐵 = ∅ → 𝐴 = ∅))
32necon3d 2391 . 2 (𝐴𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅))
43imp 124 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐵 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wne 2347  wss 3131  c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator