ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssn0 GIF version

Theorem ssn0 3489
Description: A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
ssn0 ((𝐴𝐵𝐴 ≠ ∅) → 𝐵 ≠ ∅)

Proof of Theorem ssn0
StepHypRef Expression
1 sseq0 3488 . . . 4 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)
21ex 115 . . 3 (𝐴𝐵 → (𝐵 = ∅ → 𝐴 = ∅))
32necon3d 2408 . 2 (𝐴𝐵 → (𝐴 ≠ ∅ → 𝐵 ≠ ∅))
43imp 124 1 ((𝐴𝐵𝐴 ≠ ∅) → 𝐵 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wne 2364  wss 3153  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator