ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq0 Unicode version

Theorem sseq0 3450
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
sseq0  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )

Proof of Theorem sseq0
StepHypRef Expression
1 sseq2 3166 . . 3  |-  ( B  =  (/)  ->  ( A 
C_  B  <->  A  C_  (/) ) )
2 ss0 3449 . . 3  |-  ( A 
C_  (/)  ->  A  =  (/) )
31, 2syl6bi 162 . 2  |-  ( B  =  (/)  ->  ( A 
C_  B  ->  A  =  (/) ) )
43impcom 124 1  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    C_ wss 3116   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  ssn0  3451  ssdifin0  3490  fieq0  6941  fisumss  11333  strleund  12483  strleun  12484
  Copyright terms: Public domain W3C validator