ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq0 Unicode version

Theorem sseq0 3466
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
sseq0  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )

Proof of Theorem sseq0
StepHypRef Expression
1 sseq2 3181 . . 3  |-  ( B  =  (/)  ->  ( A 
C_  B  <->  A  C_  (/) ) )
2 ss0 3465 . . 3  |-  ( A 
C_  (/)  ->  A  =  (/) )
31, 2biimtrdi 163 . 2  |-  ( B  =  (/)  ->  ( A 
C_  B  ->  A  =  (/) ) )
43impcom 125 1  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    C_ wss 3131   (/)c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425
This theorem is referenced by:  ssn0  3467  ssdifin0  3506  fieq0  6977  fisumss  11402  strleund  12564  strleun  12565
  Copyright terms: Public domain W3C validator