ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq0 Unicode version

Theorem sseq0 3533
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
sseq0  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )

Proof of Theorem sseq0
StepHypRef Expression
1 sseq2 3248 . . 3  |-  ( B  =  (/)  ->  ( A 
C_  B  <->  A  C_  (/) ) )
2 ss0 3532 . . 3  |-  ( A 
C_  (/)  ->  A  =  (/) )
31, 2biimtrdi 163 . 2  |-  ( B  =  (/)  ->  ( A 
C_  B  ->  A  =  (/) ) )
43impcom 125 1  |-  ( ( A  C_  B  /\  B  =  (/) )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    C_ wss 3197   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  ssn0  3534  ssdifin0  3573  fieq0  7139  fisumss  11898  strleund  13131  strleun  13132
  Copyright terms: Public domain W3C validator