ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abf Unicode version

Theorem abf 3504
Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.)
Hypothesis
Ref Expression
abf.1  |-  -.  ph
Assertion
Ref Expression
abf  |-  { x  |  ph }  =  (/)

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4  |-  -.  ph
21pm2.21i 647 . . 3  |-  ( ph  ->  x  e.  (/) )
32abssi 3268 . 2  |-  { x  |  ph }  C_  (/)
4 ss0 3501 . 2  |-  ( { x  |  ph }  C_  (/)  ->  { x  | 
ph }  =  (/) )
53, 4ax-mp 5 1  |-  { x  |  ph }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373    e. wcel 2176   {cab 2191    C_ wss 3166   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by:  csbprc  3506  mpo0  6015  fi0  7077
  Copyright terms: Public domain W3C validator