ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abf Unicode version

Theorem abf 3490
Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.)
Hypothesis
Ref Expression
abf.1  |-  -.  ph
Assertion
Ref Expression
abf  |-  { x  |  ph }  =  (/)

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4  |-  -.  ph
21pm2.21i 647 . . 3  |-  ( ph  ->  x  e.  (/) )
32abssi 3254 . 2  |-  { x  |  ph }  C_  (/)
4 ss0 3487 . 2  |-  ( { x  |  ph }  C_  (/)  ->  { x  | 
ph }  =  (/) )
53, 4ax-mp 5 1  |-  { x  |  ph }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    e. wcel 2164   {cab 2179    C_ wss 3153   (/)c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by:  csbprc  3492  mpo0  5980  fi0  7024
  Copyright terms: Public domain W3C validator