Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrd | Unicode version |
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
ssrd.0 | |
ssrd.1 | |
ssrd.2 | |
ssrd.3 |
Ref | Expression |
---|---|
ssrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrd.0 | . . 3 | |
2 | ssrd.3 | . . 3 | |
3 | 1, 2 | alrimi 1509 | . 2 |
4 | ssrd.1 | . . 3 | |
5 | ssrd.2 | . . 3 | |
6 | 4, 5 | dfss2f 3129 | . 2 |
7 | 3, 6 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1340 wnf 1447 wcel 2135 wnfc 2293 wss 3112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-in 3118 df-ss 3125 |
This theorem is referenced by: eqrd 3156 exmidomni 7098 |
Copyright terms: Public domain | W3C validator |