ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrd Unicode version

Theorem ssrd 3152
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
ssrd.0  |-  F/ x ph
ssrd.1  |-  F/_ x A
ssrd.2  |-  F/_ x B
ssrd.3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )
Assertion
Ref Expression
ssrd  |-  ( ph  ->  A  C_  B )

Proof of Theorem ssrd
StepHypRef Expression
1 ssrd.0 . . 3  |-  F/ x ph
2 ssrd.3 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )
31, 2alrimi 1515 . 2  |-  ( ph  ->  A. x ( x  e.  A  ->  x  e.  B ) )
4 ssrd.1 . . 3  |-  F/_ x A
5 ssrd.2 . . 3  |-  F/_ x B
64, 5dfss2f 3138 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
73, 6sylibr 133 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453    e. wcel 2141   F/_wnfc 2299    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134
This theorem is referenced by:  eqrd  3165  exmidomni  7118
  Copyright terms: Public domain W3C validator