ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrd Unicode version

Theorem ssrd 3206
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
ssrd.0  |-  F/ x ph
ssrd.1  |-  F/_ x A
ssrd.2  |-  F/_ x B
ssrd.3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )
Assertion
Ref Expression
ssrd  |-  ( ph  ->  A  C_  B )

Proof of Theorem ssrd
StepHypRef Expression
1 ssrd.0 . . 3  |-  F/ x ph
2 ssrd.3 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )
31, 2alrimi 1546 . 2  |-  ( ph  ->  A. x ( x  e.  A  ->  x  e.  B ) )
4 ssrd.1 . . 3  |-  F/_ x A
5 ssrd.2 . . 3  |-  F/_ x B
64, 5dfss2f 3192 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
73, 6sylibr 134 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   F/wnf 1484    e. wcel 2178   F/_wnfc 2337    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187
This theorem is referenced by:  eqrd  3219  exmidomni  7270
  Copyright terms: Public domain W3C validator