![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqrd | Unicode version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
eqrd.0 |
![]() ![]() ![]() ![]() |
eqrd.1 |
![]() ![]() ![]() ![]() |
eqrd.2 |
![]() ![]() ![]() ![]() |
eqrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrd.0 |
. . 3
![]() ![]() ![]() ![]() | |
2 | eqrd.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | eqrd.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | eqrd.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | biimpd 144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 3, 5 | ssrd 3162 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4 | biimprd 158 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 3, 2, 7 | ssrd 3162 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | eqssd 3174 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-in 3137 df-ss 3144 |
This theorem is referenced by: dfss4st 3370 imasnopn 13884 |
Copyright terms: Public domain | W3C validator |