ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrd Unicode version

Theorem eqrd 3188
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0  |-  F/ x ph
eqrd.1  |-  F/_ x A
eqrd.2  |-  F/_ x B
eqrd.3  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
Assertion
Ref Expression
eqrd  |-  ( ph  ->  A  =  B )

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3  |-  F/ x ph
2 eqrd.1 . . 3  |-  F/_ x A
3 eqrd.2 . . 3  |-  F/_ x B
4 eqrd.3 . . . 4  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
54biimpd 144 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )
61, 2, 3, 5ssrd 3175 . 2  |-  ( ph  ->  A  C_  B )
74biimprd 158 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
81, 3, 2, 7ssrd 3175 . 2  |-  ( ph  ->  B  C_  A )
96, 8eqssd 3187 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   F/wnf 1471    e. wcel 2160   F/_wnfc 2319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-in 3150  df-ss 3157
This theorem is referenced by:  dfss4st  3383  imasnopn  14276
  Copyright terms: Public domain W3C validator