ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrd Unicode version

Theorem eqrd 3165
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0  |-  F/ x ph
eqrd.1  |-  F/_ x A
eqrd.2  |-  F/_ x B
eqrd.3  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
Assertion
Ref Expression
eqrd  |-  ( ph  ->  A  =  B )

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3  |-  F/ x ph
2 eqrd.1 . . 3  |-  F/_ x A
3 eqrd.2 . . 3  |-  F/_ x B
4 eqrd.3 . . . 4  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
54biimpd 143 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )
61, 2, 3, 5ssrd 3152 . 2  |-  ( ph  ->  A  C_  B )
74biimprd 157 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
81, 3, 2, 7ssrd 3152 . 2  |-  ( ph  ->  B  C_  A )
96, 8eqssd 3164 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   F/wnf 1453    e. wcel 2141   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134
This theorem is referenced by:  dfss4st  3360  imasnopn  13093
  Copyright terms: Public domain W3C validator