ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrd Unicode version

Theorem eqrd 3202
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0  |-  F/ x ph
eqrd.1  |-  F/_ x A
eqrd.2  |-  F/_ x B
eqrd.3  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
Assertion
Ref Expression
eqrd  |-  ( ph  ->  A  =  B )

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3  |-  F/ x ph
2 eqrd.1 . . 3  |-  F/_ x A
3 eqrd.2 . . 3  |-  F/_ x B
4 eqrd.3 . . . 4  |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )
54biimpd 144 . . 3  |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )
61, 2, 3, 5ssrd 3189 . 2  |-  ( ph  ->  A  C_  B )
74biimprd 158 . . 3  |-  ( ph  ->  ( x  e.  B  ->  x  e.  A ) )
81, 3, 2, 7ssrd 3189 . 2  |-  ( ph  ->  B  C_  A )
96, 8eqssd 3201 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   F/wnf 1474    e. wcel 2167   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170
This theorem is referenced by:  dfss4st  3397  imasnopn  14619
  Copyright terms: Public domain W3C validator