| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssriv | Unicode version | ||
| Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssriv.1 |
|
| Ref | Expression |
|---|---|
| ssriv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3172 |
. 2
| |
| 2 | ssriv.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssid 3204 ssv 3206 difss 3290 ssun1 3327 inss1 3384 unssdif 3399 inssdif 3400 unssin 3403 inssun 3404 difindiss 3418 undif3ss 3425 0ss 3490 difprsnss 3761 snsspw 3795 pwprss 3836 pwtpss 3837 uniin 3860 iuniin 3927 iundif2ss 3983 iunpwss 4009 pwuni 4226 pwunss 4319 omsson 4650 limom 4651 xpsspw 4776 dmin 4875 dmrnssfld 4930 dmcoss 4936 dminss 5085 imainss 5086 dmxpss 5101 rnxpid 5105 mapsspm 6750 pmsspw 6751 uniixp 6789 snexxph 7025 djuss 7145 pw1on 7309 enq0enq 7515 nqnq0pi 7522 nqnq0 7525 apsscn 8691 aptap 8694 sup3exmid 9001 zssre 9350 zsscn 9351 nnssz 9360 uzssz 9638 divfnzn 9712 zssq 9718 qssre 9721 rpssre 9756 ixxssxr 9992 ixxssixx 9994 iooval2 10007 ioossre 10027 rge0ssre 10069 fz1ssnn 10148 fzssuz 10157 fzssp1 10159 uzdisj 10185 fz0ssnn0 10208 nn0disj 10230 fzossfz 10258 fzouzsplit 10272 fzossnn 10282 fzo0ssnn0 10308 infssuzcldc 10342 seq3coll 10951 wrdexb 10964 fclim 11476 bitsss 12127 prmssnn 12305 4sqlem19 12603 restsspw 12951 prdsgrpd 13311 prdsinvgd 13312 ringssrng 13669 subrngintm 13844 subrgintm 13875 cnsubmlem 14210 cnsubglem 14211 znf1o 14283 unitg 14382 cldss2 14426 blssioo 14873 tgioo 14874 limccl 14979 limcresi 14986 dvef 15047 plyssc 15059 reeff1o 15093 bj-omsson 15692 |
| Copyright terms: Public domain | W3C validator |