| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssriv | Unicode version | ||
| Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssriv.1 |
|
| Ref | Expression |
|---|---|
| ssriv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3181 |
. 2
| |
| 2 | ssriv.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssid 3213 ssv 3215 difss 3299 ssun1 3336 inss1 3393 unssdif 3408 inssdif 3409 unssin 3412 inssun 3413 difindiss 3427 undif3ss 3434 0ss 3499 difprsnss 3771 snsspw 3805 pwprss 3846 pwtpss 3847 uniin 3870 iuniin 3937 iundif2ss 3993 iunpwss 4019 pwuni 4236 pwunss 4330 omsson 4661 limom 4662 xpsspw 4787 dmin 4886 dmrnssfld 4941 dmcoss 4948 dminss 5097 imainss 5098 dmxpss 5113 rnxpid 5117 mapsspm 6769 pmsspw 6770 uniixp 6808 snexxph 7052 djuss 7172 pw1on 7338 enq0enq 7544 nqnq0pi 7551 nqnq0 7554 apsscn 8720 aptap 8723 sup3exmid 9030 zssre 9379 zsscn 9380 nnssz 9389 uzssz 9668 divfnzn 9742 zssq 9748 qssre 9751 rpssre 9786 ixxssxr 10022 ixxssixx 10024 iooval2 10037 ioossre 10057 rge0ssre 10099 fz1ssnn 10178 fzssuz 10187 fzssp1 10189 uzdisj 10215 fz0ssnn0 10238 nn0disj 10260 fzossfz 10288 fzouzsplit 10303 fzossnn 10313 fzo0ssnn0 10344 infssuzcldc 10378 seq3coll 10987 wrdexb 11006 fclim 11605 bitsss 12256 prmssnn 12434 4sqlem19 12732 restsspw 13081 prdsgrpd 13441 prdsinvgd 13442 ringssrng 13799 subrngintm 13974 subrgintm 14005 cnsubmlem 14340 cnsubglem 14341 znf1o 14413 mplbasss 14458 unitg 14534 cldss2 14578 blssioo 15025 tgioo 15026 limccl 15131 limcresi 15138 dvef 15199 plyssc 15211 reeff1o 15245 bj-omsson 15898 |
| Copyright terms: Public domain | W3C validator |