![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssriv | Unicode version |
Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssriv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssriv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1451 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: ssid 3173 ssv 3175 difss 3259 ssun1 3296 inss1 3353 unssdif 3368 inssdif 3369 unssin 3372 inssun 3373 difindiss 3387 undif3ss 3394 0ss 3459 difprsnss 3727 snsspw 3760 pwprss 3801 pwtpss 3802 uniin 3825 iuniin 3892 iundif2ss 3947 iunpwss 3973 pwuni 4187 pwunss 4277 omsson 4606 limom 4607 xpsspw 4732 dmin 4828 dmrnssfld 4883 dmcoss 4889 dminss 5035 imainss 5036 dmxpss 5051 rnxpid 5055 mapsspm 6672 pmsspw 6673 uniixp 6711 snexxph 6939 djuss 7059 pw1on 7215 enq0enq 7405 nqnq0pi 7412 nqnq0 7415 apsscn 8578 sup3exmid 8885 zssre 9231 zsscn 9232 nnssz 9241 uzssz 9518 divfnzn 9592 zssq 9598 qssre 9601 rpssre 9633 ixxssxr 9869 ixxssixx 9871 iooval2 9884 ioossre 9904 rge0ssre 9946 fz1ssnn 10024 fzssuz 10033 fzssp1 10035 uzdisj 10061 fz0ssnn0 10084 nn0disj 10106 fzossfz 10133 fzouzsplit 10147 fzossnn 10157 fzo0ssnn0 10183 seq3coll 10788 fclim 11268 infssuzcldc 11917 prmssnn 12077 restsspw 12618 unitg 13131 cldss2 13175 blssioo 13614 tgioo 13615 limccl 13697 limcresi 13704 dvef 13757 reeff1o 13763 bj-omsson 14272 |
Copyright terms: Public domain | W3C validator |