Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssriv | Unicode version |
Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 |
Ref | Expression |
---|---|
ssriv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3136 | . 2 | |
2 | ssriv.1 | . 2 | |
3 | 1, 2 | mpgbir 1446 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssid 3167 ssv 3169 difss 3253 ssun1 3290 inss1 3347 unssdif 3362 inssdif 3363 unssin 3366 inssun 3367 difindiss 3381 undif3ss 3388 0ss 3453 difprsnss 3718 snsspw 3751 pwprss 3792 pwtpss 3793 uniin 3816 iuniin 3883 iundif2ss 3938 iunpwss 3964 pwuni 4178 pwunss 4268 omsson 4597 limom 4598 xpsspw 4723 dmin 4819 dmrnssfld 4874 dmcoss 4880 dminss 5025 imainss 5026 dmxpss 5041 rnxpid 5045 mapsspm 6660 pmsspw 6661 uniixp 6699 snexxph 6927 djuss 7047 pw1on 7203 enq0enq 7393 nqnq0pi 7400 nqnq0 7403 apsscn 8566 sup3exmid 8873 zssre 9219 zsscn 9220 nnssz 9229 uzssz 9506 divfnzn 9580 zssq 9586 qssre 9589 rpssre 9621 ixxssxr 9857 ixxssixx 9859 iooval2 9872 ioossre 9892 rge0ssre 9934 fz1ssnn 10012 fzssuz 10021 fzssp1 10023 uzdisj 10049 fz0ssnn0 10072 nn0disj 10094 fzossfz 10121 fzouzsplit 10135 fzossnn 10145 fzo0ssnn0 10171 seq3coll 10777 fclim 11257 infssuzcldc 11906 prmssnn 12066 restsspw 12589 unitg 12856 cldss2 12900 blssioo 13339 tgioo 13340 limccl 13422 limcresi 13429 dvef 13482 reeff1o 13488 bj-omsson 13997 |
Copyright terms: Public domain | W3C validator |