| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssriv | Unicode version | ||
| Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssriv.1 |
|
| Ref | Expression |
|---|---|
| ssriv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3172 |
. 2
| |
| 2 | ssriv.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssid 3203 ssv 3205 difss 3289 ssun1 3326 inss1 3383 unssdif 3398 inssdif 3399 unssin 3402 inssun 3403 difindiss 3417 undif3ss 3424 0ss 3489 difprsnss 3760 snsspw 3794 pwprss 3835 pwtpss 3836 uniin 3859 iuniin 3926 iundif2ss 3982 iunpwss 4008 pwuni 4225 pwunss 4318 omsson 4649 limom 4650 xpsspw 4775 dmin 4874 dmrnssfld 4929 dmcoss 4935 dminss 5084 imainss 5085 dmxpss 5100 rnxpid 5104 mapsspm 6741 pmsspw 6742 uniixp 6780 snexxph 7016 djuss 7136 pw1on 7293 enq0enq 7498 nqnq0pi 7505 nqnq0 7508 apsscn 8674 aptap 8677 sup3exmid 8984 zssre 9333 zsscn 9334 nnssz 9343 uzssz 9621 divfnzn 9695 zssq 9701 qssre 9704 rpssre 9739 ixxssxr 9975 ixxssixx 9977 iooval2 9990 ioossre 10010 rge0ssre 10052 fz1ssnn 10131 fzssuz 10140 fzssp1 10142 uzdisj 10168 fz0ssnn0 10191 nn0disj 10213 fzossfz 10241 fzouzsplit 10255 fzossnn 10265 fzo0ssnn0 10291 infssuzcldc 10325 seq3coll 10934 wrdexb 10947 fclim 11459 bitsss 12110 prmssnn 12280 4sqlem19 12578 restsspw 12920 ringssrng 13593 subrngintm 13768 subrgintm 13799 cnsubmlem 14134 cnsubglem 14135 znf1o 14207 unitg 14298 cldss2 14342 blssioo 14789 tgioo 14790 limccl 14895 limcresi 14902 dvef 14963 plyssc 14975 reeff1o 15009 bj-omsson 15608 |
| Copyright terms: Public domain | W3C validator |