| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrd | GIF version | ||
| Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
| ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
| ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
| ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 1544 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | dfss2f 3183 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 Ⅎwnf 1482 ∈ wcel 2175 Ⅎwnfc 2334 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqrd 3210 exmidomni 7226 |
| Copyright terms: Public domain | W3C validator |