| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssrd | GIF version | ||
| Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) | 
| Ref | Expression | 
|---|---|
| ssrd.0 | ⊢ Ⅎ𝑥𝜑 | 
| ssrd.1 | ⊢ Ⅎ𝑥𝐴 | 
| ssrd.2 | ⊢ Ⅎ𝑥𝐵 | 
| ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | 
| Ref | Expression | 
|---|---|
| ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 1536 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | 
| 4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | dfss2f 3174 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | 
| 7 | 3, 6 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: eqrd 3201 exmidomni 7208 | 
| Copyright terms: Public domain | W3C validator |