Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrd | GIF version |
Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
ssrd.0 | ⊢ Ⅎ𝑥𝜑 |
ssrd.1 | ⊢ Ⅎ𝑥𝐴 |
ssrd.2 | ⊢ Ⅎ𝑥𝐵 |
ssrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
ssrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ssrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | alrimi 1510 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | ssrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | ssrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | dfss2f 3133 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 3, 6 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 ∈ wcel 2136 Ⅎwnfc 2295 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqrd 3160 exmidomni 7106 |
Copyright terms: Public domain | W3C validator |