ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomni Unicode version

Theorem exmidomni 7201
Description: Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidomni  |-  (EXMID  <->  A. x  x  e. Omni )

Proof of Theorem exmidomni
Dummy variables  u  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidomniim 7200 . 2  |-  (EXMID  ->  A. x  x  e. Omni )
2 vex 2763 . . . . . . . . . 10  |-  u  e. 
_V
3 eleq1w 2254 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  e. Omni  <->  u  e. Omni ) )
42, 3spcv 2854 . . . . . . . . 9  |-  ( A. x  x  e. Omni  ->  u  e. Omni )
5 xpeq1 4673 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
x  X.  { (/) } )  =  ( u  X.  { (/) } ) )
65fveq1d 5556 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
( x  X.  { (/)
} ) `  y
)  =  ( ( u  X.  { (/) } ) `  y ) )
76eqeq1d 2202 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( ( x  X.  { (/) } ) `  y )  =  (/)  <->  (
( u  X.  { (/)
} ) `  y
)  =  (/) ) )
87rexeqbi1dv 2703 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( E. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  (/)  <->  E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/) ) )
96eqeq1d 2202 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( ( x  X.  { (/) } ) `  y )  =  1o  <->  ( ( u  X.  { (/)
} ) `  y
)  =  1o ) )
109raleqbi1dv 2702 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( A. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  1o  <->  A. y  e.  u  ( ( u  X.  { (/)
} ) `  y
)  =  1o ) )
118, 10orbi12d 794 . . . . . . . . . 10  |-  ( x  =  u  ->  (
( E. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  (/)  \/  A. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  1o )  <->  ( E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/)  \/  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o ) ) )
12 vex 2763 . . . . . . . . . . . . 13  |-  x  e. 
_V
13 isomni 7195 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (
x  e. Omni  <->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) ) )
1412, 13ax-mp 5 . . . . . . . . . . . 12  |-  ( x  e. Omni 
<-> 
A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
1514biimpi 120 . . . . . . . . . . 11  |-  ( x  e. Omni  ->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
16 0ex 4156 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
1716prid1 3724 . . . . . . . . . . . . 13  |-  (/)  e.  { (/)
,  1o }
18 df2o3 6483 . . . . . . . . . . . . 13  |-  2o  =  { (/) ,  1o }
1917, 18eleqtrri 2269 . . . . . . . . . . . 12  |-  (/)  e.  2o
2019fconst6 5453 . . . . . . . . . . 11  |-  ( x  X.  { (/) } ) : x --> 2o
21 p0ex 4217 . . . . . . . . . . . . 13  |-  { (/) }  e.  _V
2212, 21xpex 4774 . . . . . . . . . . . 12  |-  ( x  X.  { (/) } )  e.  _V
23 feq1 5386 . . . . . . . . . . . . 13  |-  ( f  =  ( x  X.  { (/) } )  -> 
( f : x --> 2o  <->  ( x  X.  { (/) } ) : x --> 2o ) )
24 fveq1 5553 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( x  X.  { (/) } )  -> 
( f `  y
)  =  ( ( x  X.  { (/) } ) `  y ) )
2524eqeq1d 2202 . . . . . . . . . . . . . . 15  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( f `  y )  =  (/)  <->  (
( x  X.  { (/)
} ) `  y
)  =  (/) ) )
2625rexbidv 2495 . . . . . . . . . . . . . 14  |-  ( f  =  ( x  X.  { (/) } )  -> 
( E. y  e.  x  ( f `  y )  =  (/)  <->  E. y  e.  x  (
( x  X.  { (/)
} ) `  y
)  =  (/) ) )
2724eqeq1d 2202 . . . . . . . . . . . . . . 15  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( f `  y )  =  1o  <->  ( ( x  X.  { (/)
} ) `  y
)  =  1o ) )
2827ralbidv 2494 . . . . . . . . . . . . . 14  |-  ( f  =  ( x  X.  { (/) } )  -> 
( A. y  e.  x  ( f `  y )  =  1o  <->  A. y  e.  x  ( ( x  X.  { (/)
} ) `  y
)  =  1o ) )
2926, 28orbi12d 794 . . . . . . . . . . . . 13  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o )  <-> 
( E. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  (/)  \/  A. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  1o ) ) )
3023, 29imbi12d 234 . . . . . . . . . . . 12  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) )  <->  ( (
x  X.  { (/) } ) : x --> 2o  ->  ( E. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  1o ) ) ) )
3122, 30spcv 2854 . . . . . . . . . . 11  |-  ( A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) )  -> 
( ( x  X.  { (/) } ) : x --> 2o  ->  ( E. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  1o ) ) )
3215, 20, 31mpisyl 1457 . . . . . . . . . 10  |-  ( x  e. Omni  ->  ( E. y  e.  x  ( (
x  X.  { (/) } ) `  y )  =  (/)  \/  A. y  e.  x  ( (
x  X.  { (/) } ) `  y )  =  1o ) )
3311, 32vtoclga 2826 . . . . . . . . 9  |-  ( u  e. Omni  ->  ( E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/)  \/  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o ) )
344, 33syl 14 . . . . . . . 8  |-  ( A. x  x  e. Omni  ->  ( E. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o ) )
3534adantr 276 . . . . . . 7  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/)  \/  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o ) )
36 simplr 528 . . . . . . . . . 10  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/) )  ->  u  C_ 
{ (/) } )
37 rexm 3546 . . . . . . . . . . . 12  |-  ( E. y  e.  u  ( ( u  X.  { (/)
} ) `  y
)  =  (/)  ->  E. y 
y  e.  u )
38 sssnm 3780 . . . . . . . . . . . 12  |-  ( E. y  y  e.  u  ->  ( u  C_  { (/) }  <-> 
u  =  { (/) } ) )
3937, 38syl 14 . . . . . . . . . . 11  |-  ( E. y  e.  u  ( ( u  X.  { (/)
} ) `  y
)  =  (/)  ->  (
u  C_  { (/) }  <->  u  =  { (/) } ) )
4039adantl 277 . . . . . . . . . 10  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/) )  ->  (
u  C_  { (/) }  <->  u  =  { (/) } ) )
4136, 40mpbid 147 . . . . . . . . 9  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/) )  ->  u  =  { (/) } )
4241ex 115 . . . . . . . 8  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/)  ->  u  =  { (/) } ) )
43 nfv 1539 . . . . . . . . . . . 12  |-  F/ y ( A. x  x  e. Omni  /\  u  C_  { (/) } )
44 nfra1 2525 . . . . . . . . . . . 12  |-  F/ y A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o
4543, 44nfan 1576 . . . . . . . . . . 11  |-  F/ y ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )
46 nfcv 2336 . . . . . . . . . . 11  |-  F/_ y
u
47 nfcv 2336 . . . . . . . . . . 11  |-  F/_ y (/)
48 1n0 6485 . . . . . . . . . . . . . 14  |-  1o  =/=  (/)
4948neii 2366 . . . . . . . . . . . . 13  |-  -.  1o  =  (/)
50 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o )
5150r19.21bi 2582 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )  /\  y  e.  u
)  ->  ( (
u  X.  { (/) } ) `  y )  =  1o )
5216fvconst2 5774 . . . . . . . . . . . . . . . 16  |-  ( y  e.  u  ->  (
( u  X.  { (/)
} ) `  y
)  =  (/) )
5352adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )  /\  y  e.  u
)  ->  ( (
u  X.  { (/) } ) `  y )  =  (/) )
5451, 53eqtr3d 2228 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )  /\  y  e.  u
)  ->  1o  =  (/) )
5554ex 115 . . . . . . . . . . . . 13  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  -> 
( y  e.  u  ->  1o  =  (/) ) )
5649, 55mtoi 665 . . . . . . . . . . . 12  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  -.  y  e.  u
)
5756pm2.21d 620 . . . . . . . . . . 11  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  -> 
( y  e.  u  ->  y  e.  (/) ) )
5845, 46, 47, 57ssrd 3184 . . . . . . . . . 10  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  u  C_  (/) )
59 ss0 3487 . . . . . . . . . 10  |-  ( u 
C_  (/)  ->  u  =  (/) )
6058, 59syl 14 . . . . . . . . 9  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  u  =  (/) )
6160ex 115 . . . . . . . 8  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o  ->  u  =  (/) ) )
6242, 61orim12d 787 . . . . . . 7  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( ( E. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o )  ->  ( u  =  { (/) }  \/  u  =  (/) ) ) )
6335, 62mpd 13 . . . . . 6  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( u  =  { (/) }  \/  u  =  (/) ) )
6463orcomd 730 . . . . 5  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( u  =  (/)  \/  u  =  { (/) } ) )
6564ex 115 . . . 4  |-  ( A. x  x  e. Omni  ->  (
u  C_  { (/) }  ->  ( u  =  (/)  \/  u  =  { (/) } ) ) )
6665alrimiv 1885 . . 3  |-  ( A. x  x  e. Omni  ->  A. u
( u  C_  { (/) }  ->  ( u  =  (/)  \/  u  =  { (/)
} ) ) )
67 exmid01 4227 . . 3  |-  (EXMID  <->  A. u
( u  C_  { (/) }  ->  ( u  =  (/)  \/  u  =  { (/)
} ) ) )
6866, 67sylibr 134 . 2  |-  ( A. x  x  e. Omni  -> EXMID )
691, 68impbii 126 1  |-  (EXMID  <->  A. x  x  e. Omni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    C_ wss 3153   (/)c0 3446   {csn 3618   {cpr 3619  EXMIDwem 4223    X. cxp 4657   -->wf 5250   ` cfv 5254   1oc1o 6462   2oc2o 6463  Omnicomni 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-exmid 4224  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-1o 6469  df-2o 6470  df-omni 7194
This theorem is referenced by:  exmidlpo  7202
  Copyright terms: Public domain W3C validator