ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomni Unicode version

Theorem exmidomni 7305
Description: Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidomni  |-  (EXMID  <->  A. x  x  e. Omni )

Proof of Theorem exmidomni
Dummy variables  u  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidomniim 7304 . 2  |-  (EXMID  ->  A. x  x  e. Omni )
2 vex 2802 . . . . . . . . . 10  |-  u  e. 
_V
3 eleq1w 2290 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  e. Omni  <->  u  e. Omni ) )
42, 3spcv 2897 . . . . . . . . 9  |-  ( A. x  x  e. Omni  ->  u  e. Omni )
5 xpeq1 4732 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
x  X.  { (/) } )  =  ( u  X.  { (/) } ) )
65fveq1d 5628 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
( x  X.  { (/)
} ) `  y
)  =  ( ( u  X.  { (/) } ) `  y ) )
76eqeq1d 2238 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( ( x  X.  { (/) } ) `  y )  =  (/)  <->  (
( u  X.  { (/)
} ) `  y
)  =  (/) ) )
87rexeqbi1dv 2741 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( E. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  (/)  <->  E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/) ) )
96eqeq1d 2238 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
( ( x  X.  { (/) } ) `  y )  =  1o  <->  ( ( u  X.  { (/)
} ) `  y
)  =  1o ) )
109raleqbi1dv 2740 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( A. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  1o  <->  A. y  e.  u  ( ( u  X.  { (/)
} ) `  y
)  =  1o ) )
118, 10orbi12d 798 . . . . . . . . . 10  |-  ( x  =  u  ->  (
( E. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  (/)  \/  A. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  1o )  <->  ( E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/)  \/  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o ) ) )
12 vex 2802 . . . . . . . . . . . . 13  |-  x  e. 
_V
13 isomni 7299 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (
x  e. Omni  <->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) ) )
1412, 13ax-mp 5 . . . . . . . . . . . 12  |-  ( x  e. Omni 
<-> 
A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
1514biimpi 120 . . . . . . . . . . 11  |-  ( x  e. Omni  ->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
16 0ex 4210 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
1716prid1 3772 . . . . . . . . . . . . 13  |-  (/)  e.  { (/)
,  1o }
18 df2o3 6574 . . . . . . . . . . . . 13  |-  2o  =  { (/) ,  1o }
1917, 18eleqtrri 2305 . . . . . . . . . . . 12  |-  (/)  e.  2o
2019fconst6 5524 . . . . . . . . . . 11  |-  ( x  X.  { (/) } ) : x --> 2o
21 p0ex 4271 . . . . . . . . . . . . 13  |-  { (/) }  e.  _V
2212, 21xpex 4833 . . . . . . . . . . . 12  |-  ( x  X.  { (/) } )  e.  _V
23 feq1 5455 . . . . . . . . . . . . 13  |-  ( f  =  ( x  X.  { (/) } )  -> 
( f : x --> 2o  <->  ( x  X.  { (/) } ) : x --> 2o ) )
24 fveq1 5625 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( x  X.  { (/) } )  -> 
( f `  y
)  =  ( ( x  X.  { (/) } ) `  y ) )
2524eqeq1d 2238 . . . . . . . . . . . . . . 15  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( f `  y )  =  (/)  <->  (
( x  X.  { (/)
} ) `  y
)  =  (/) ) )
2625rexbidv 2531 . . . . . . . . . . . . . 14  |-  ( f  =  ( x  X.  { (/) } )  -> 
( E. y  e.  x  ( f `  y )  =  (/)  <->  E. y  e.  x  (
( x  X.  { (/)
} ) `  y
)  =  (/) ) )
2724eqeq1d 2238 . . . . . . . . . . . . . . 15  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( f `  y )  =  1o  <->  ( ( x  X.  { (/)
} ) `  y
)  =  1o ) )
2827ralbidv 2530 . . . . . . . . . . . . . 14  |-  ( f  =  ( x  X.  { (/) } )  -> 
( A. y  e.  x  ( f `  y )  =  1o  <->  A. y  e.  x  ( ( x  X.  { (/)
} ) `  y
)  =  1o ) )
2926, 28orbi12d 798 . . . . . . . . . . . . 13  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o )  <-> 
( E. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  (/)  \/  A. y  e.  x  ( ( x  X.  { (/) } ) `
 y )  =  1o ) ) )
3023, 29imbi12d 234 . . . . . . . . . . . 12  |-  ( f  =  ( x  X.  { (/) } )  -> 
( ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) )  <->  ( (
x  X.  { (/) } ) : x --> 2o  ->  ( E. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  1o ) ) ) )
3122, 30spcv 2897 . . . . . . . . . . 11  |-  ( A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) )  -> 
( ( x  X.  { (/) } ) : x --> 2o  ->  ( E. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  x  ( ( x  X.  { (/) } ) `  y )  =  1o ) ) )
3215, 20, 31mpisyl 1489 . . . . . . . . . 10  |-  ( x  e. Omni  ->  ( E. y  e.  x  ( (
x  X.  { (/) } ) `  y )  =  (/)  \/  A. y  e.  x  ( (
x  X.  { (/) } ) `  y )  =  1o ) )
3311, 32vtoclga 2867 . . . . . . . . 9  |-  ( u  e. Omni  ->  ( E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/)  \/  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o ) )
344, 33syl 14 . . . . . . . 8  |-  ( A. x  x  e. Omni  ->  ( E. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o ) )
3534adantr 276 . . . . . . 7  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/)  \/  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o ) )
36 simplr 528 . . . . . . . . . 10  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/) )  ->  u  C_ 
{ (/) } )
37 rexm 3591 . . . . . . . . . . . 12  |-  ( E. y  e.  u  ( ( u  X.  { (/)
} ) `  y
)  =  (/)  ->  E. y 
y  e.  u )
38 sssnm 3831 . . . . . . . . . . . 12  |-  ( E. y  y  e.  u  ->  ( u  C_  { (/) }  <-> 
u  =  { (/) } ) )
3937, 38syl 14 . . . . . . . . . . 11  |-  ( E. y  e.  u  ( ( u  X.  { (/)
} ) `  y
)  =  (/)  ->  (
u  C_  { (/) }  <->  u  =  { (/) } ) )
4039adantl 277 . . . . . . . . . 10  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/) )  ->  (
u  C_  { (/) }  <->  u  =  { (/) } ) )
4136, 40mpbid 147 . . . . . . . . 9  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  E. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  (/) )  ->  u  =  { (/) } )
4241ex 115 . . . . . . . 8  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( E. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  (/)  ->  u  =  { (/) } ) )
43 nfv 1574 . . . . . . . . . . . 12  |-  F/ y ( A. x  x  e. Omni  /\  u  C_  { (/) } )
44 nfra1 2561 . . . . . . . . . . . 12  |-  F/ y A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o
4543, 44nfan 1611 . . . . . . . . . . 11  |-  F/ y ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )
46 nfcv 2372 . . . . . . . . . . 11  |-  F/_ y
u
47 nfcv 2372 . . . . . . . . . . 11  |-  F/_ y (/)
48 1n0 6576 . . . . . . . . . . . . . 14  |-  1o  =/=  (/)
4948neii 2402 . . . . . . . . . . . . 13  |-  -.  1o  =  (/)
50 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o )
5150r19.21bi 2618 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )  /\  y  e.  u
)  ->  ( (
u  X.  { (/) } ) `  y )  =  1o )
5216fvconst2 5854 . . . . . . . . . . . . . . . 16  |-  ( y  e.  u  ->  (
( u  X.  { (/)
} ) `  y
)  =  (/) )
5352adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )  /\  y  e.  u
)  ->  ( (
u  X.  { (/) } ) `  y )  =  (/) )
5451, 53eqtr3d 2264 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. x  x  e. Omni  /\  u  C_  {
(/) } )  /\  A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o )  /\  y  e.  u
)  ->  1o  =  (/) )
5554ex 115 . . . . . . . . . . . . 13  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  -> 
( y  e.  u  ->  1o  =  (/) ) )
5649, 55mtoi 668 . . . . . . . . . . . 12  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  -.  y  e.  u
)
5756pm2.21d 622 . . . . . . . . . . 11  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  -> 
( y  e.  u  ->  y  e.  (/) ) )
5845, 46, 47, 57ssrd 3229 . . . . . . . . . 10  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  u  C_  (/) )
59 ss0 3532 . . . . . . . . . 10  |-  ( u 
C_  (/)  ->  u  =  (/) )
6058, 59syl 14 . . . . . . . . 9  |-  ( ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  /\  A. y  e.  u  ( (
u  X.  { (/) } ) `  y )  =  1o )  ->  u  =  (/) )
6160ex 115 . . . . . . . 8  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( A. y  e.  u  (
( u  X.  { (/)
} ) `  y
)  =  1o  ->  u  =  (/) ) )
6242, 61orim12d 791 . . . . . . 7  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( ( E. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  (/)  \/ 
A. y  e.  u  ( ( u  X.  { (/) } ) `  y )  =  1o )  ->  ( u  =  { (/) }  \/  u  =  (/) ) ) )
6335, 62mpd 13 . . . . . 6  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( u  =  { (/) }  \/  u  =  (/) ) )
6463orcomd 734 . . . . 5  |-  ( ( A. x  x  e. Omni  /\  u  C_  { (/) } )  ->  ( u  =  (/)  \/  u  =  { (/) } ) )
6564ex 115 . . . 4  |-  ( A. x  x  e. Omni  ->  (
u  C_  { (/) }  ->  ( u  =  (/)  \/  u  =  { (/) } ) ) )
6665alrimiv 1920 . . 3  |-  ( A. x  x  e. Omni  ->  A. u
( u  C_  { (/) }  ->  ( u  =  (/)  \/  u  =  { (/)
} ) ) )
67 exmid01 4281 . . 3  |-  (EXMID  <->  A. u
( u  C_  { (/) }  ->  ( u  =  (/)  \/  u  =  { (/)
} ) ) )
6866, 67sylibr 134 . 2  |-  ( A. x  x  e. Omni  -> EXMID )
691, 68impbii 126 1  |-  (EXMID  <->  A. x  x  e. Omni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799    C_ wss 3197   (/)c0 3491   {csn 3666   {cpr 3667  EXMIDwem 4277    X. cxp 4716   -->wf 5313   ` cfv 5317   1oc1o 6553   2oc2o 6554  Omnicomni 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-exmid 4278  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-1o 6560  df-2o 6561  df-omni 7298
This theorem is referenced by:  exmidlpo  7306
  Copyright terms: Public domain W3C validator