ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres Unicode version

Theorem ssres 4972
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
ssres  |-  ( A 
C_  B  ->  ( A  |`  C )  C_  ( B  |`  C ) )

Proof of Theorem ssres
StepHypRef Expression
1 ssrin 3388 . 2  |-  ( A 
C_  B  ->  ( A  i^i  ( C  X.  _V ) )  C_  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 4675 . 2  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
3 df-res 4675 . 2  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
41, 2, 33sstr4g 3226 1  |-  ( A 
C_  B  ->  ( A  |`  C )  C_  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   _Vcvv 2763    i^i cin 3156    C_ wss 3157    X. cxp 4661    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-res 4675
This theorem is referenced by:  imass1  5044
  Copyright terms: Public domain W3C validator