ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres Unicode version

Theorem ssres 5031
Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
ssres  |-  ( A 
C_  B  ->  ( A  |`  C )  C_  ( B  |`  C ) )

Proof of Theorem ssres
StepHypRef Expression
1 ssrin 3429 . 2  |-  ( A 
C_  B  ->  ( A  i^i  ( C  X.  _V ) )  C_  ( B  i^i  ( C  X.  _V ) ) )
2 df-res 4731 . 2  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
3 df-res 4731 . 2  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
41, 2, 33sstr4g 3267 1  |-  ( A 
C_  B  ->  ( A  |`  C )  C_  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   _Vcvv 2799    i^i cin 3196    C_ wss 3197    X. cxp 4717    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-res 4731
This theorem is referenced by:  imass1  5103
  Copyright terms: Public domain W3C validator