ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imass1 Unicode version

Theorem imass1 5076
Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.)
Assertion
Ref Expression
imass1  |-  ( A 
C_  B  ->  ( A " C )  C_  ( B " C ) )

Proof of Theorem imass1
StepHypRef Expression
1 ssres 5004 . . 3  |-  ( A 
C_  B  ->  ( A  |`  C )  C_  ( B  |`  C ) )
2 rnss 4927 . . 3  |-  ( ( A  |`  C )  C_  ( B  |`  C )  ->  ran  ( A  |`  C )  C_  ran  ( B  |`  C ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ran  ( A  |`  C ) 
C_  ran  ( B  |`  C ) )
4 df-ima 4706 . 2  |-  ( A
" C )  =  ran  ( A  |`  C )
5 df-ima 4706 . 2  |-  ( B
" C )  =  ran  ( B  |`  C )
63, 4, 53sstr4g 3244 1  |-  ( A 
C_  B  ->  ( A " C )  C_  ( B " C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3174   ran crn 4694    |` cres 4695   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by:  imasnopn  14886
  Copyright terms: Public domain W3C validator