ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imass1 Unicode version

Theorem imass1 5015
Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.)
Assertion
Ref Expression
imass1  |-  ( A 
C_  B  ->  ( A " C )  C_  ( B " C ) )

Proof of Theorem imass1
StepHypRef Expression
1 ssres 4945 . . 3  |-  ( A 
C_  B  ->  ( A  |`  C )  C_  ( B  |`  C ) )
2 rnss 4869 . . 3  |-  ( ( A  |`  C )  C_  ( B  |`  C )  ->  ran  ( A  |`  C )  C_  ran  ( B  |`  C ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ran  ( A  |`  C ) 
C_  ran  ( B  |`  C ) )
4 df-ima 4651 . 2  |-  ( A
" C )  =  ran  ( A  |`  C )
5 df-ima 4651 . 2  |-  ( B
" C )  =  ran  ( B  |`  C )
63, 4, 53sstr4g 3210 1  |-  ( A 
C_  B  ->  ( A " C )  C_  ( B " C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3141   ran crn 4639    |` cres 4640   "cima 4641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-cnv 4646  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651
This theorem is referenced by:  imasnopn  14070
  Copyright terms: Public domain W3C validator