ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imass1 Unicode version

Theorem imass1 4979
Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.)
Assertion
Ref Expression
imass1  |-  ( A 
C_  B  ->  ( A " C )  C_  ( B " C ) )

Proof of Theorem imass1
StepHypRef Expression
1 ssres 4910 . . 3  |-  ( A 
C_  B  ->  ( A  |`  C )  C_  ( B  |`  C ) )
2 rnss 4834 . . 3  |-  ( ( A  |`  C )  C_  ( B  |`  C )  ->  ran  ( A  |`  C )  C_  ran  ( B  |`  C ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ran  ( A  |`  C ) 
C_  ran  ( B  |`  C ) )
4 df-ima 4617 . 2  |-  ( A
" C )  =  ran  ( A  |`  C )
5 df-ima 4617 . 2  |-  ( B
" C )  =  ran  ( B  |`  C )
63, 4, 53sstr4g 3185 1  |-  ( A 
C_  B  ->  ( A " C )  C_  ( B " C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3116   ran crn 4605    |` cres 4606   "cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  imasnopn  12939
  Copyright terms: Public domain W3C validator