ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres2 Unicode version

Theorem ssres2 4802
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 4607 . . 3  |-  ( A 
C_  B  ->  ( A  X.  _V )  C_  ( B  X.  _V )
)
2 sslin 3266 . . 3  |-  ( ( A  X.  _V )  C_  ( B  X.  _V )  ->  ( C  i^i  ( A  X.  _V )
)  C_  ( C  i^i  ( B  X.  _V ) ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ( C  i^i  ( A  X.  _V ) )  C_  ( C  i^i  ( B  X.  _V ) ) )
4 df-res 4509 . 2  |-  ( C  |`  A )  =  ( C  i^i  ( A  X.  _V ) )
5 df-res 4509 . 2  |-  ( C  |`  B )  =  ( C  i^i  ( B  X.  _V ) )
63, 4, 53sstr4g 3104 1  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   _Vcvv 2655    i^i cin 3034    C_ wss 3035    X. cxp 4495    |` cres 4499
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-in 3041  df-ss 3048  df-opab 3948  df-xp 4503  df-res 4509
This theorem is referenced by:  imass2  4871  resasplitss  5258  fnsnsplitss  5571  1stcof  6013  2ndcof  6014
  Copyright terms: Public domain W3C validator