ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres2 Unicode version

Theorem ssres2 4936
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 4738 . . 3  |-  ( A 
C_  B  ->  ( A  X.  _V )  C_  ( B  X.  _V )
)
2 sslin 3363 . . 3  |-  ( ( A  X.  _V )  C_  ( B  X.  _V )  ->  ( C  i^i  ( A  X.  _V )
)  C_  ( C  i^i  ( B  X.  _V ) ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ( C  i^i  ( A  X.  _V ) )  C_  ( C  i^i  ( B  X.  _V ) ) )
4 df-res 4640 . 2  |-  ( C  |`  A )  =  ( C  i^i  ( A  X.  _V ) )
5 df-res 4640 . 2  |-  ( C  |`  B )  =  ( C  i^i  ( B  X.  _V ) )
63, 4, 53sstr4g 3200 1  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   _Vcvv 2739    i^i cin 3130    C_ wss 3131    X. cxp 4626    |` cres 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-opab 4067  df-xp 4634  df-res 4640
This theorem is referenced by:  imass2  5006  resasplitss  5397  fnsnsplitss  5717  1stcof  6166  2ndcof  6167
  Copyright terms: Public domain W3C validator