Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssres2 | Unicode version |
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ssres2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss1 4714 | . . 3 | |
2 | sslin 3348 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | df-res 4616 | . 2 | |
5 | df-res 4616 | . 2 | |
6 | 3, 4, 5 | 3sstr4g 3185 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 cvv 2726 cin 3115 wss 3116 cxp 4602 cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-opab 4044 df-xp 4610 df-res 4616 |
This theorem is referenced by: imass2 4980 resasplitss 5367 fnsnsplitss 5684 1stcof 6131 2ndcof 6132 |
Copyright terms: Public domain | W3C validator |