ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres2 Unicode version

Theorem ssres2 4918
Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 4721 . . 3  |-  ( A 
C_  B  ->  ( A  X.  _V )  C_  ( B  X.  _V )
)
2 sslin 3353 . . 3  |-  ( ( A  X.  _V )  C_  ( B  X.  _V )  ->  ( C  i^i  ( A  X.  _V )
)  C_  ( C  i^i  ( B  X.  _V ) ) )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  ( C  i^i  ( A  X.  _V ) )  C_  ( C  i^i  ( B  X.  _V ) ) )
4 df-res 4623 . 2  |-  ( C  |`  A )  =  ( C  i^i  ( A  X.  _V ) )
5 df-res 4623 . 2  |-  ( C  |`  B )  =  ( C  i^i  ( B  X.  _V ) )
63, 4, 53sstr4g 3190 1  |-  ( A 
C_  B  ->  ( C  |`  A )  C_  ( C  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   _Vcvv 2730    i^i cin 3120    C_ wss 3121    X. cxp 4609    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by:  imass2  4987  resasplitss  5377  fnsnsplitss  5695  1stcof  6142  2ndcof  6143
  Copyright terms: Public domain W3C validator