ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efexp Unicode version

Theorem efexp 11645
Description: The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )

Proof of Theorem efexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9217 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 mulcom 7903 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
31, 2sylan2 284 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
43fveq2d 5500 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( exp `  ( N  x.  A
) ) )
5 oveq2 5861 . . . . . 6  |-  ( j  =  0  ->  ( A  x.  j )  =  ( A  x.  0 ) )
65fveq2d 5500 . . . . 5  |-  ( j  =  0  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  0 ) ) )
7 oveq2 5861 . . . . 5  |-  ( j  =  0  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ 0 ) )
86, 7eqeq12d 2185 . . . 4  |-  ( j  =  0  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) ) )
9 oveq2 5861 . . . . . 6  |-  ( j  =  k  ->  ( A  x.  j )  =  ( A  x.  k ) )
109fveq2d 5500 . . . . 5  |-  ( j  =  k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  k )
) )
11 oveq2 5861 . . . . 5  |-  ( j  =  k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ k
) )
1210, 11eqeq12d 2185 . . . 4  |-  ( j  =  k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  k
) )  =  ( ( exp `  A
) ^ k ) ) )
13 oveq2 5861 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A  x.  j )  =  ( A  x.  ( k  +  1 ) ) )
1413fveq2d 5500 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  ( k  +  1 ) ) ) )
15 oveq2 5861 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ (
k  +  1 ) ) )
1614, 15eqeq12d 2185 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  (
k  +  1 ) ) )  =  ( ( exp `  A
) ^ ( k  +  1 ) ) ) )
17 oveq2 5861 . . . . . 6  |-  ( j  =  -u k  ->  ( A  x.  j )  =  ( A  x.  -u k ) )
1817fveq2d 5500 . . . . 5  |-  ( j  =  -u k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  -u k ) ) )
19 oveq2 5861 . . . . 5  |-  ( j  =  -u k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ -u k
) )
2018, 19eqeq12d 2185 . . . 4  |-  ( j  =  -u k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  -u k
) )  =  ( ( exp `  A
) ^ -u k
) ) )
21 oveq2 5861 . . . . . 6  |-  ( j  =  N  ->  ( A  x.  j )  =  ( A  x.  N ) )
2221fveq2d 5500 . . . . 5  |-  ( j  =  N  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  N )
) )
23 oveq2 5861 . . . . 5  |-  ( j  =  N  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ N
) )
2422, 23eqeq12d 2185 . . . 4  |-  ( j  =  N  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  N
) )  =  ( ( exp `  A
) ^ N ) ) )
25 ef0 11635 . . . . 5  |-  ( exp `  0 )  =  1
26 mul01 8308 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
2726fveq2d 5500 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( exp `  0
) )
28 efcl 11627 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2928exp0d 10603 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  A
) ^ 0 )  =  1 )
3025, 27, 293eqtr4a 2229 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) )
31 oveq1 5860 . . . . . . 7  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
3231adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  ( A  x.  k
) )  x.  ( exp `  A ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
33 nn0cn 9145 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  k  e.  CC )
34 ax-1cn 7867 . . . . . . . . . . . 12  |-  1  e.  CC
35 adddi 7906 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
3634, 35mp3an3 1321 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
37 mulid1 7917 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
3837adantr 274 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  1 )  =  A )
3938oveq2d 5869 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  +  ( A  x.  1 ) )  =  ( ( A  x.  k )  +  A ) )
4036, 39eqtrd 2203 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4133, 40sylan2 284 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4241fveq2d 5500 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( exp `  ( ( A  x.  k )  +  A
) ) )
43 mulcl 7901 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  k
)  e.  CC )
4433, 43sylan2 284 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  k
)  e.  CC )
45 simpl 108 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
46 efadd 11638 . . . . . . . . 9  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4744, 45, 46syl2anc 409 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4842, 47eqtrd 2203 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4948adantr 274 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
50 expp1 10483 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5128, 50sylan 281 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5251adantr 274 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  A ) ^ (
k  +  1 ) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
5332, 49, 523eqtr4d 2213 . . . . 5  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) )
5453exp31 362 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) ) ) )
55 oveq2 5861 . . . . . 6  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( 1  /  ( exp `  ( A  x.  k )
) )  =  ( 1  /  ( ( exp `  A ) ^ k ) ) )
56 nncn 8886 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  CC )
57 mulneg2 8315 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5856, 57sylan2 284 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5958fveq2d 5500 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( exp `  -u ( A  x.  k ) ) )
6056, 43sylan2 284 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  k
)  e.  CC )
61 efneg 11642 . . . . . . . . 9  |-  ( ( A  x.  k )  e.  CC  ->  ( exp `  -u ( A  x.  k ) )  =  ( 1  /  ( exp `  ( A  x.  k ) ) ) )
6260, 61syl 14 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  -u ( A  x.  k )
)  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
6359, 62eqtrd 2203 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
64 efap0 11640 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  A ) #  0 )
65 nnnn0 9142 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
66 expnegap0 10484 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  ( exp `  A ) #  0  /\  k  e. 
NN0 )  ->  (
( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6728, 64, 65, 66syl2an3an 1293 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6863, 67eqeq12d 2185 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k )  <-> 
( 1  /  ( exp `  ( A  x.  k ) ) )  =  ( 1  / 
( ( exp `  A
) ^ k ) ) ) )
6955, 68syl5ibr 155 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) )
7069ex 114 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) ) )
718, 12, 16, 20, 24, 30, 54, 70zindd 9330 . . 3  |-  ( A  e.  CC  ->  ( N  e.  ZZ  ->  ( exp `  ( A  x.  N ) )  =  ( ( exp `  A ) ^ N
) ) )
7271imp 123 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( ( exp `  A ) ^ N ) )
734, 72eqtr3d 2205 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779   -ucneg 8091   # cap 8500    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   ^cexp 10475   expce 11605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611
This theorem is referenced by:  efzval  11646  efgt0  11647  tanval3ap  11677  demoivre  11735  ef2kpi  13521  reexplog  13586  relogexp  13587
  Copyright terms: Public domain W3C validator