ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efexp Unicode version

Theorem efexp 11828
Description: The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )

Proof of Theorem efexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 9325 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 mulcom 8003 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
31, 2sylan2 286 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A  x.  N
)  =  ( N  x.  A ) )
43fveq2d 5559 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( exp `  ( N  x.  A
) ) )
5 oveq2 5927 . . . . . 6  |-  ( j  =  0  ->  ( A  x.  j )  =  ( A  x.  0 ) )
65fveq2d 5559 . . . . 5  |-  ( j  =  0  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  0 ) ) )
7 oveq2 5927 . . . . 5  |-  ( j  =  0  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ 0 ) )
86, 7eqeq12d 2208 . . . 4  |-  ( j  =  0  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) ) )
9 oveq2 5927 . . . . . 6  |-  ( j  =  k  ->  ( A  x.  j )  =  ( A  x.  k ) )
109fveq2d 5559 . . . . 5  |-  ( j  =  k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  k )
) )
11 oveq2 5927 . . . . 5  |-  ( j  =  k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ k
) )
1210, 11eqeq12d 2208 . . . 4  |-  ( j  =  k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  k
) )  =  ( ( exp `  A
) ^ k ) ) )
13 oveq2 5927 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A  x.  j )  =  ( A  x.  ( k  +  1 ) ) )
1413fveq2d 5559 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  ( k  +  1 ) ) ) )
15 oveq2 5927 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ (
k  +  1 ) ) )
1614, 15eqeq12d 2208 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  (
k  +  1 ) ) )  =  ( ( exp `  A
) ^ ( k  +  1 ) ) ) )
17 oveq2 5927 . . . . . 6  |-  ( j  =  -u k  ->  ( A  x.  j )  =  ( A  x.  -u k ) )
1817fveq2d 5559 . . . . 5  |-  ( j  =  -u k  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  -u k ) ) )
19 oveq2 5927 . . . . 5  |-  ( j  =  -u k  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ -u k
) )
2018, 19eqeq12d 2208 . . . 4  |-  ( j  =  -u k  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  -u k
) )  =  ( ( exp `  A
) ^ -u k
) ) )
21 oveq2 5927 . . . . . 6  |-  ( j  =  N  ->  ( A  x.  j )  =  ( A  x.  N ) )
2221fveq2d 5559 . . . . 5  |-  ( j  =  N  ->  ( exp `  ( A  x.  j ) )  =  ( exp `  ( A  x.  N )
) )
23 oveq2 5927 . . . . 5  |-  ( j  =  N  ->  (
( exp `  A
) ^ j )  =  ( ( exp `  A ) ^ N
) )
2422, 23eqeq12d 2208 . . . 4  |-  ( j  =  N  ->  (
( exp `  ( A  x.  j )
)  =  ( ( exp `  A ) ^ j )  <->  ( exp `  ( A  x.  N
) )  =  ( ( exp `  A
) ^ N ) ) )
25 ef0 11818 . . . . 5  |-  ( exp `  0 )  =  1
26 mul01 8410 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
2726fveq2d 5559 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( exp `  0
) )
28 efcl 11810 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
2928exp0d 10741 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  A
) ^ 0 )  =  1 )
3025, 27, 293eqtr4a 2252 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( A  x.  0 ) )  =  ( ( exp `  A
) ^ 0 ) )
31 oveq1 5926 . . . . . . 7  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
3231adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  ( A  x.  k
) )  x.  ( exp `  A ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
33 nn0cn 9253 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  k  e.  CC )
34 ax-1cn 7967 . . . . . . . . . . . 12  |-  1  e.  CC
35 adddi 8006 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
3634, 35mp3an3 1337 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
37 mulrid 8018 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
3837adantr 276 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  1 )  =  A )
3938oveq2d 5935 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  +  ( A  x.  1 ) )  =  ( ( A  x.  k )  +  A ) )
4036, 39eqtrd 2226 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4133, 40sylan2 286 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
4241fveq2d 5559 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( exp `  ( ( A  x.  k )  +  A
) ) )
43 mulcl 8001 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  k
)  e.  CC )
4433, 43sylan2 286 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A  x.  k
)  e.  CC )
45 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
46 efadd 11821 . . . . . . . . 9  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4744, 45, 46syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  (
( A  x.  k
)  +  A ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4842, 47eqtrd 2226 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
4948adantr 276 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  ( A  x.  k ) )  x.  ( exp `  A
) ) )
50 expp1 10620 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5128, 50sylan 283 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( exp `  A
) ^ ( k  +  1 ) )  =  ( ( ( exp `  A ) ^ k )  x.  ( exp `  A
) ) )
5251adantr 276 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( ( exp `  A ) ^ (
k  +  1 ) )  =  ( ( ( exp `  A
) ^ k )  x.  ( exp `  A
) ) )
5332, 49, 523eqtr4d 2236 . . . . 5  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k ) )  ->  ( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) )
5453exp31 364 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  ( k  +  1 ) ) )  =  ( ( exp `  A ) ^ ( k  +  1 ) ) ) ) )
55 oveq2 5927 . . . . . 6  |-  ( ( exp `  ( A  x.  k ) )  =  ( ( exp `  A ) ^ k
)  ->  ( 1  /  ( exp `  ( A  x.  k )
) )  =  ( 1  /  ( ( exp `  A ) ^ k ) ) )
56 nncn 8992 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  CC )
57 mulneg2 8417 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5856, 57sylan2 286 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  -u k
)  =  -u ( A  x.  k )
)
5958fveq2d 5559 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( exp `  -u ( A  x.  k ) ) )
6056, 43sylan2 286 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  x.  k
)  e.  CC )
61 efneg 11825 . . . . . . . . 9  |-  ( ( A  x.  k )  e.  CC  ->  ( exp `  -u ( A  x.  k ) )  =  ( 1  /  ( exp `  ( A  x.  k ) ) ) )
6260, 61syl 14 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  -u ( A  x.  k )
)  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
6359, 62eqtrd 2226 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( exp `  ( A  x.  -u k ) )  =  ( 1  /  ( exp `  ( A  x.  k )
) ) )
64 efap0 11823 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  A ) #  0 )
65 nnnn0 9250 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
66 expnegap0 10621 . . . . . . . 8  |-  ( ( ( exp `  A
)  e.  CC  /\  ( exp `  A ) #  0  /\  k  e. 
NN0 )  ->  (
( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6728, 64, 65, 66syl2an3an 1309 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  A
) ^ -u k
)  =  ( 1  /  ( ( exp `  A ) ^ k
) ) )
6863, 67eqeq12d 2208 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k )  <-> 
( 1  /  ( exp `  ( A  x.  k ) ) )  =  ( 1  / 
( ( exp `  A
) ^ k ) ) ) )
6955, 68imbitrrid 156 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) )
7069ex 115 . . . 4  |-  ( A  e.  CC  ->  (
k  e.  NN  ->  ( ( exp `  ( A  x.  k )
)  =  ( ( exp `  A ) ^ k )  -> 
( exp `  ( A  x.  -u k ) )  =  ( ( exp `  A ) ^ -u k ) ) ) )
718, 12, 16, 20, 24, 30, 54, 70zindd 9438 . . 3  |-  ( A  e.  CC  ->  ( N  e.  ZZ  ->  ( exp `  ( A  x.  N ) )  =  ( ( exp `  A ) ^ N
) ) )
7271imp 124 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( A  x.  N )
)  =  ( ( exp `  A ) ^ N ) )
734, 72eqtr3d 2228 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A )
)  =  ( ( exp `  A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   -ucneg 8193   # cap 8602    / cdiv 8693   NNcn 8984   NN0cn0 9243   ZZcz 9320   ^cexp 10612   expce 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794
This theorem is referenced by:  efzval  11829  efgt0  11830  tanval3ap  11860  demoivre  11919  ef2kpi  14982  reexplog  15047  relogexp  15048
  Copyright terms: Public domain W3C validator