| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > expcnvap0 | Unicode version | ||
| Description: A sequence of powers of a
complex number  | 
| Ref | Expression | 
|---|---|
| expcnvap0.1 | 
 | 
| expcnvap0.2 | 
 | 
| expcnvap0.0 | 
 | 
| Ref | Expression | 
|---|---|
| expcnvap0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnuz 9637 | 
. . 3
 | |
| 2 | 1zzd 9353 | 
. . 3
 | |
| 3 | expcnvap0.2 | 
. . . . . . . 8
 | |
| 4 | expcnvap0.1 | 
. . . . . . . . . 10
 | |
| 5 | expcnvap0.0 | 
. . . . . . . . . 10
 | |
| 6 | 4, 5 | absrpclapd 11353 | 
. . . . . . . . 9
 | 
| 7 | 6 | reclt1d 9785 | 
. . . . . . . 8
 | 
| 8 | 3, 7 | mpbid 147 | 
. . . . . . 7
 | 
| 9 | 1re 8025 | 
. . . . . . . 8
 | |
| 10 | 6 | rpreccld 9782 | 
. . . . . . . . 9
 | 
| 11 | 10 | rpred 9771 | 
. . . . . . . 8
 | 
| 12 | difrp 9767 | 
. . . . . . . 8
 | |
| 13 | 9, 11, 12 | sylancr 414 | 
. . . . . . 7
 | 
| 14 | 8, 13 | mpbid 147 | 
. . . . . 6
 | 
| 15 | 14 | rpreccld 9782 | 
. . . . 5
 | 
| 16 | 15 | rpcnd 9773 | 
. . . 4
 | 
| 17 | divcnv 11662 | 
. . . 4
 | |
| 18 | 16, 17 | syl 14 | 
. . 3
 | 
| 19 | nnex 8996 | 
. . . . 5
 | |
| 20 | 19 | mptex 5788 | 
. . . 4
 | 
| 21 | 20 | a1i 9 | 
. . 3
 | 
| 22 | simpr 110 | 
. . . . 5
 | |
| 23 | 16 | adantr 276 | 
. . . . . 6
 | 
| 24 | 22 | nncnd 9004 | 
. . . . . 6
 | 
| 25 | 22 | nnap0d 9036 | 
. . . . . 6
 | 
| 26 | 23, 24, 25 | divclapd 8817 | 
. . . . 5
 | 
| 27 | oveq2 5930 | 
. . . . . 6
 | |
| 28 | eqid 2196 | 
. . . . . 6
 | |
| 29 | 27, 28 | fvmptg 5637 | 
. . . . 5
 | 
| 30 | 22, 26, 29 | syl2anc 411 | 
. . . 4
 | 
| 31 | 15 | rpred 9771 | 
. . . . 5
 | 
| 32 | nndivre 9026 | 
. . . . 5
 | |
| 33 | 31, 32 | sylan 283 | 
. . . 4
 | 
| 34 | 30, 33 | eqeltrd 2273 | 
. . 3
 | 
| 35 | 6 | adantr 276 | 
. . . . . . . 8
 | 
| 36 | 35 | rpcnd 9773 | 
. . . . . . 7
 | 
| 37 | nnnn0 9256 | 
. . . . . . . 8
 | |
| 38 | 37 | adantl 277 | 
. . . . . . 7
 | 
| 39 | 36, 38 | expcld 10765 | 
. . . . . 6
 | 
| 40 | oveq2 5930 | 
. . . . . . 7
 | |
| 41 | eqid 2196 | 
. . . . . . 7
 | |
| 42 | 40, 41 | fvmptg 5637 | 
. . . . . 6
 | 
| 43 | 22, 39, 42 | syl2anc 411 | 
. . . . 5
 | 
| 44 | nnz 9345 | 
. . . . . 6
 | |
| 45 | rpexpcl 10650 | 
. . . . . 6
 | |
| 46 | 6, 44, 45 | syl2an 289 | 
. . . . 5
 | 
| 47 | 43, 46 | eqeltrd 2273 | 
. . . 4
 | 
| 48 | 47 | rpred 9771 | 
. . 3
 | 
| 49 | nnrp 9738 | 
. . . . . . 7
 | |
| 50 | rpmulcl 9753 | 
. . . . . . 7
 | |
| 51 | 14, 49, 50 | syl2an 289 | 
. . . . . 6
 | 
| 52 | 51 | rpred 9771 | 
. . . . . . . 8
 | 
| 53 | peano2re 8162 | 
. . . . . . . . 9
 | |
| 54 | 52, 53 | syl 14 | 
. . . . . . . 8
 | 
| 55 | rpexpcl 10650 | 
. . . . . . . . . 10
 | |
| 56 | 10, 44, 55 | syl2an 289 | 
. . . . . . . . 9
 | 
| 57 | 56 | rpred 9771 | 
. . . . . . . 8
 | 
| 58 | 52 | lep1d 8958 | 
. . . . . . . 8
 | 
| 59 | 11 | adantr 276 | 
. . . . . . . . 9
 | 
| 60 | 10 | rpge0d 9775 | 
. . . . . . . . . 10
 | 
| 61 | 60 | adantr 276 | 
. . . . . . . . 9
 | 
| 62 | bernneq2 10753 | 
. . . . . . . . 9
 | |
| 63 | 59, 38, 61, 62 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 64 | 52, 54, 57, 58, 63 | letrd 8150 | 
. . . . . . 7
 | 
| 65 | 6 | rpcnd 9773 | 
. . . . . . . 8
 | 
| 66 | 6 | rpap0d 9777 | 
. . . . . . . 8
 | 
| 67 | exprecap 10672 | 
. . . . . . . 8
 | |
| 68 | 65, 66, 44, 67 | syl2an3an 1309 | 
. . . . . . 7
 | 
| 69 | 64, 68 | breqtrd 4059 | 
. . . . . 6
 | 
| 70 | 51, 46, 69 | lerec2d 9793 | 
. . . . 5
 | 
| 71 | 14 | rpcnd 9773 | 
. . . . . . 7
 | 
| 72 | 14 | rpap0d 9777 | 
. . . . . . 7
 | 
| 73 | 71, 72 | jca 306 | 
. . . . . 6
 | 
| 74 | nncn 8998 | 
. . . . . . 7
 | |
| 75 | nnap0 9019 | 
. . . . . . 7
 | |
| 76 | 74, 75 | jca 306 | 
. . . . . 6
 | 
| 77 | recdivap2 8752 | 
. . . . . 6
 | |
| 78 | 73, 76, 77 | syl2an 289 | 
. . . . 5
 | 
| 79 | 70, 78 | breqtrrd 4061 | 
. . . 4
 | 
| 80 | 79, 43, 30 | 3brtr4d 4065 | 
. . 3
 | 
| 81 | 47 | rpge0d 9775 | 
. . 3
 | 
| 82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11501 | 
. 2
 | 
| 83 | nn0ex 9255 | 
. . . . 5
 | |
| 84 | 83 | mptex 5788 | 
. . . 4
 | 
| 85 | 84 | a1i 9 | 
. . 3
 | 
| 86 | 4 | adantr 276 | 
. . . . . 6
 | 
| 87 | 86, 38 | expcld 10765 | 
. . . . 5
 | 
| 88 | oveq2 5930 | 
. . . . . 6
 | |
| 89 | eqid 2196 | 
. . . . . 6
 | |
| 90 | 88, 89 | fvmptg 5637 | 
. . . . 5
 | 
| 91 | 38, 87, 90 | syl2anc 411 | 
. . . 4
 | 
| 92 | expcl 10649 | 
. . . . 5
 | |
| 93 | 4, 37, 92 | syl2an 289 | 
. . . 4
 | 
| 94 | 91, 93 | eqeltrd 2273 | 
. . 3
 | 
| 95 | absexp 11244 | 
. . . . 5
 | |
| 96 | 4, 37, 95 | syl2an 289 | 
. . . 4
 | 
| 97 | 91 | fveq2d 5562 | 
. . . 4
 | 
| 98 | 96, 97, 43 | 3eqtr4rd 2240 | 
. . 3
 | 
| 99 | 1, 2, 85, 21, 94, 98 | climabs0 11472 | 
. 2
 | 
| 100 | 82, 99 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 | 
| This theorem is referenced by: expcnvre 11668 | 
| Copyright terms: Public domain | W3C validator |