| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcnvap0 | Unicode version | ||
| Description: A sequence of powers of a
complex number |
| Ref | Expression |
|---|---|
| expcnvap0.1 |
|
| expcnvap0.2 |
|
| expcnvap0.0 |
|
| Ref | Expression |
|---|---|
| expcnvap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9640 |
. . 3
| |
| 2 | 1zzd 9356 |
. . 3
| |
| 3 | expcnvap0.2 |
. . . . . . . 8
| |
| 4 | expcnvap0.1 |
. . . . . . . . . 10
| |
| 5 | expcnvap0.0 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | absrpclapd 11356 |
. . . . . . . . 9
|
| 7 | 6 | reclt1d 9788 |
. . . . . . . 8
|
| 8 | 3, 7 | mpbid 147 |
. . . . . . 7
|
| 9 | 1re 8028 |
. . . . . . . 8
| |
| 10 | 6 | rpreccld 9785 |
. . . . . . . . 9
|
| 11 | 10 | rpred 9774 |
. . . . . . . 8
|
| 12 | difrp 9770 |
. . . . . . . 8
| |
| 13 | 9, 11, 12 | sylancr 414 |
. . . . . . 7
|
| 14 | 8, 13 | mpbid 147 |
. . . . . 6
|
| 15 | 14 | rpreccld 9785 |
. . . . 5
|
| 16 | 15 | rpcnd 9776 |
. . . 4
|
| 17 | divcnv 11665 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | nnex 8999 |
. . . . 5
| |
| 20 | 19 | mptex 5789 |
. . . 4
|
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | simpr 110 |
. . . . 5
| |
| 23 | 16 | adantr 276 |
. . . . . 6
|
| 24 | 22 | nncnd 9007 |
. . . . . 6
|
| 25 | 22 | nnap0d 9039 |
. . . . . 6
|
| 26 | 23, 24, 25 | divclapd 8820 |
. . . . 5
|
| 27 | oveq2 5931 |
. . . . . 6
| |
| 28 | eqid 2196 |
. . . . . 6
| |
| 29 | 27, 28 | fvmptg 5638 |
. . . . 5
|
| 30 | 22, 26, 29 | syl2anc 411 |
. . . 4
|
| 31 | 15 | rpred 9774 |
. . . . 5
|
| 32 | nndivre 9029 |
. . . . 5
| |
| 33 | 31, 32 | sylan 283 |
. . . 4
|
| 34 | 30, 33 | eqeltrd 2273 |
. . 3
|
| 35 | 6 | adantr 276 |
. . . . . . . 8
|
| 36 | 35 | rpcnd 9776 |
. . . . . . 7
|
| 37 | nnnn0 9259 |
. . . . . . . 8
| |
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 36, 38 | expcld 10768 |
. . . . . 6
|
| 40 | oveq2 5931 |
. . . . . . 7
| |
| 41 | eqid 2196 |
. . . . . . 7
| |
| 42 | 40, 41 | fvmptg 5638 |
. . . . . 6
|
| 43 | 22, 39, 42 | syl2anc 411 |
. . . . 5
|
| 44 | nnz 9348 |
. . . . . 6
| |
| 45 | rpexpcl 10653 |
. . . . . 6
| |
| 46 | 6, 44, 45 | syl2an 289 |
. . . . 5
|
| 47 | 43, 46 | eqeltrd 2273 |
. . . 4
|
| 48 | 47 | rpred 9774 |
. . 3
|
| 49 | nnrp 9741 |
. . . . . . 7
| |
| 50 | rpmulcl 9756 |
. . . . . . 7
| |
| 51 | 14, 49, 50 | syl2an 289 |
. . . . . 6
|
| 52 | 51 | rpred 9774 |
. . . . . . . 8
|
| 53 | peano2re 8165 |
. . . . . . . . 9
| |
| 54 | 52, 53 | syl 14 |
. . . . . . . 8
|
| 55 | rpexpcl 10653 |
. . . . . . . . . 10
| |
| 56 | 10, 44, 55 | syl2an 289 |
. . . . . . . . 9
|
| 57 | 56 | rpred 9774 |
. . . . . . . 8
|
| 58 | 52 | lep1d 8961 |
. . . . . . . 8
|
| 59 | 11 | adantr 276 |
. . . . . . . . 9
|
| 60 | 10 | rpge0d 9778 |
. . . . . . . . . 10
|
| 61 | 60 | adantr 276 |
. . . . . . . . 9
|
| 62 | bernneq2 10756 |
. . . . . . . . 9
| |
| 63 | 59, 38, 61, 62 | syl3anc 1249 |
. . . . . . . 8
|
| 64 | 52, 54, 57, 58, 63 | letrd 8153 |
. . . . . . 7
|
| 65 | 6 | rpcnd 9776 |
. . . . . . . 8
|
| 66 | 6 | rpap0d 9780 |
. . . . . . . 8
|
| 67 | exprecap 10675 |
. . . . . . . 8
| |
| 68 | 65, 66, 44, 67 | syl2an3an 1309 |
. . . . . . 7
|
| 69 | 64, 68 | breqtrd 4060 |
. . . . . 6
|
| 70 | 51, 46, 69 | lerec2d 9796 |
. . . . 5
|
| 71 | 14 | rpcnd 9776 |
. . . . . . 7
|
| 72 | 14 | rpap0d 9780 |
. . . . . . 7
|
| 73 | 71, 72 | jca 306 |
. . . . . 6
|
| 74 | nncn 9001 |
. . . . . . 7
| |
| 75 | nnap0 9022 |
. . . . . . 7
| |
| 76 | 74, 75 | jca 306 |
. . . . . 6
|
| 77 | recdivap2 8755 |
. . . . . 6
| |
| 78 | 73, 76, 77 | syl2an 289 |
. . . . 5
|
| 79 | 70, 78 | breqtrrd 4062 |
. . . 4
|
| 80 | 79, 43, 30 | 3brtr4d 4066 |
. . 3
|
| 81 | 47 | rpge0d 9778 |
. . 3
|
| 82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11504 |
. 2
|
| 83 | nn0ex 9258 |
. . . . 5
| |
| 84 | 83 | mptex 5789 |
. . . 4
|
| 85 | 84 | a1i 9 |
. . 3
|
| 86 | 4 | adantr 276 |
. . . . . 6
|
| 87 | 86, 38 | expcld 10768 |
. . . . 5
|
| 88 | oveq2 5931 |
. . . . . 6
| |
| 89 | eqid 2196 |
. . . . . 6
| |
| 90 | 88, 89 | fvmptg 5638 |
. . . . 5
|
| 91 | 38, 87, 90 | syl2anc 411 |
. . . 4
|
| 92 | expcl 10652 |
. . . . 5
| |
| 93 | 4, 37, 92 | syl2an 289 |
. . . 4
|
| 94 | 91, 93 | eqeltrd 2273 |
. . 3
|
| 95 | absexp 11247 |
. . . . 5
| |
| 96 | 4, 37, 95 | syl2an 289 |
. . . 4
|
| 97 | 91 | fveq2d 5563 |
. . . 4
|
| 98 | 96, 97, 43 | 3eqtr4rd 2240 |
. . 3
|
| 99 | 1, 2, 85, 21, 94, 98 | climabs0 11475 |
. 2
|
| 100 | 82, 99 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 ax-caucvg 8002 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-frec 6451 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-n0 9253 df-z 9330 df-uz 9605 df-rp 9732 df-seqfrec 10543 df-exp 10634 df-cj 11010 df-re 11011 df-im 11012 df-rsqrt 11166 df-abs 11167 df-clim 11447 |
| This theorem is referenced by: expcnvre 11671 |
| Copyright terms: Public domain | W3C validator |