Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expcnvap0 | Unicode version |
Description: A sequence of powers of a complex number with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.) |
Ref | Expression |
---|---|
expcnvap0.1 | |
expcnvap0.2 | |
expcnvap0.0 | # |
Ref | Expression |
---|---|
expcnvap0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9501 | . . 3 | |
2 | 1zzd 9218 | . . 3 | |
3 | expcnvap0.2 | . . . . . . . 8 | |
4 | expcnvap0.1 | . . . . . . . . . 10 | |
5 | expcnvap0.0 | . . . . . . . . . 10 # | |
6 | 4, 5 | absrpclapd 11130 | . . . . . . . . 9 |
7 | 6 | reclt1d 9646 | . . . . . . . 8 |
8 | 3, 7 | mpbid 146 | . . . . . . 7 |
9 | 1re 7898 | . . . . . . . 8 | |
10 | 6 | rpreccld 9643 | . . . . . . . . 9 |
11 | 10 | rpred 9632 | . . . . . . . 8 |
12 | difrp 9628 | . . . . . . . 8 | |
13 | 9, 11, 12 | sylancr 411 | . . . . . . 7 |
14 | 8, 13 | mpbid 146 | . . . . . 6 |
15 | 14 | rpreccld 9643 | . . . . 5 |
16 | 15 | rpcnd 9634 | . . . 4 |
17 | divcnv 11438 | . . . 4 | |
18 | 16, 17 | syl 14 | . . 3 |
19 | nnex 8863 | . . . . 5 | |
20 | 19 | mptex 5711 | . . . 4 |
21 | 20 | a1i 9 | . . 3 |
22 | simpr 109 | . . . . 5 | |
23 | 16 | adantr 274 | . . . . . 6 |
24 | 22 | nncnd 8871 | . . . . . 6 |
25 | 22 | nnap0d 8903 | . . . . . 6 # |
26 | 23, 24, 25 | divclapd 8686 | . . . . 5 |
27 | oveq2 5850 | . . . . . 6 | |
28 | eqid 2165 | . . . . . 6 | |
29 | 27, 28 | fvmptg 5562 | . . . . 5 |
30 | 22, 26, 29 | syl2anc 409 | . . . 4 |
31 | 15 | rpred 9632 | . . . . 5 |
32 | nndivre 8893 | . . . . 5 | |
33 | 31, 32 | sylan 281 | . . . 4 |
34 | 30, 33 | eqeltrd 2243 | . . 3 |
35 | 6 | adantr 274 | . . . . . . . 8 |
36 | 35 | rpcnd 9634 | . . . . . . 7 |
37 | nnnn0 9121 | . . . . . . . 8 | |
38 | 37 | adantl 275 | . . . . . . 7 |
39 | 36, 38 | expcld 10588 | . . . . . 6 |
40 | oveq2 5850 | . . . . . . 7 | |
41 | eqid 2165 | . . . . . . 7 | |
42 | 40, 41 | fvmptg 5562 | . . . . . 6 |
43 | 22, 39, 42 | syl2anc 409 | . . . . 5 |
44 | nnz 9210 | . . . . . 6 | |
45 | rpexpcl 10474 | . . . . . 6 | |
46 | 6, 44, 45 | syl2an 287 | . . . . 5 |
47 | 43, 46 | eqeltrd 2243 | . . . 4 |
48 | 47 | rpred 9632 | . . 3 |
49 | nnrp 9599 | . . . . . . 7 | |
50 | rpmulcl 9614 | . . . . . . 7 | |
51 | 14, 49, 50 | syl2an 287 | . . . . . 6 |
52 | 51 | rpred 9632 | . . . . . . . 8 |
53 | peano2re 8034 | . . . . . . . . 9 | |
54 | 52, 53 | syl 14 | . . . . . . . 8 |
55 | rpexpcl 10474 | . . . . . . . . . 10 | |
56 | 10, 44, 55 | syl2an 287 | . . . . . . . . 9 |
57 | 56 | rpred 9632 | . . . . . . . 8 |
58 | 52 | lep1d 8826 | . . . . . . . 8 |
59 | 11 | adantr 274 | . . . . . . . . 9 |
60 | 10 | rpge0d 9636 | . . . . . . . . . 10 |
61 | 60 | adantr 274 | . . . . . . . . 9 |
62 | bernneq2 10576 | . . . . . . . . 9 | |
63 | 59, 38, 61, 62 | syl3anc 1228 | . . . . . . . 8 |
64 | 52, 54, 57, 58, 63 | letrd 8022 | . . . . . . 7 |
65 | 6 | rpcnd 9634 | . . . . . . . 8 |
66 | 6 | rpap0d 9638 | . . . . . . . 8 # |
67 | exprecap 10496 | . . . . . . . 8 # | |
68 | 65, 66, 44, 67 | syl2an3an 1288 | . . . . . . 7 |
69 | 64, 68 | breqtrd 4008 | . . . . . 6 |
70 | 51, 46, 69 | lerec2d 9654 | . . . . 5 |
71 | 14 | rpcnd 9634 | . . . . . . 7 |
72 | 14 | rpap0d 9638 | . . . . . . 7 # |
73 | 71, 72 | jca 304 | . . . . . 6 # |
74 | nncn 8865 | . . . . . . 7 | |
75 | nnap0 8886 | . . . . . . 7 # | |
76 | 74, 75 | jca 304 | . . . . . 6 # |
77 | recdivap2 8621 | . . . . . 6 # # | |
78 | 73, 76, 77 | syl2an 287 | . . . . 5 |
79 | 70, 78 | breqtrrd 4010 | . . . 4 |
80 | 79, 43, 30 | 3brtr4d 4014 | . . 3 |
81 | 47 | rpge0d 9636 | . . 3 |
82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11277 | . 2 |
83 | nn0ex 9120 | . . . . 5 | |
84 | 83 | mptex 5711 | . . . 4 |
85 | 84 | a1i 9 | . . 3 |
86 | 4 | adantr 274 | . . . . . 6 |
87 | 86, 38 | expcld 10588 | . . . . 5 |
88 | oveq2 5850 | . . . . . 6 | |
89 | eqid 2165 | . . . . . 6 | |
90 | 88, 89 | fvmptg 5562 | . . . . 5 |
91 | 38, 87, 90 | syl2anc 409 | . . . 4 |
92 | expcl 10473 | . . . . 5 | |
93 | 4, 37, 92 | syl2an 287 | . . . 4 |
94 | 91, 93 | eqeltrd 2243 | . . 3 |
95 | absexp 11021 | . . . . 5 | |
96 | 4, 37, 95 | syl2an 287 | . . . 4 |
97 | 91 | fveq2d 5490 | . . . 4 |
98 | 96, 97, 43 | 3eqtr4rd 2209 | . . 3 |
99 | 1, 2, 85, 21, 94, 98 | climabs0 11248 | . 2 |
100 | 82, 99 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 class class class wbr 3982 cmpt 4043 cfv 5188 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cle 7934 cmin 8069 # cap 8479 cdiv 8568 cn 8857 cn0 9114 cz 9191 crp 9589 cexp 10454 cabs 10939 cli 11219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 |
This theorem is referenced by: expcnvre 11444 |
Copyright terms: Public domain | W3C validator |