ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 Unicode version

Theorem expcnvap0 10896
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1  |-  ( ph  ->  A  e.  CC )
expcnvap0.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
expcnvap0.0  |-  ( ph  ->  A #  0 )
Assertion
Ref Expression
expcnvap0  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnvap0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 9054 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 8777 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 expcnvap0.2 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  <  1 )
4 expcnvap0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
5 expcnvap0.0 . . . . . . . . . 10  |-  ( ph  ->  A #  0 )
64, 5absrpclapd 10621 . . . . . . . . 9  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
76reclt1d 9187 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  A
)  <  1  <->  1  <  ( 1  /  ( abs `  A ) ) ) )
83, 7mpbid 145 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  /  ( abs `  A
) ) )
9 1re 7487 . . . . . . . 8  |-  1  e.  RR
106rpreccld 9184 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  ( abs `  A ) )  e.  RR+ )
1110rpred 9173 . . . . . . . 8  |-  ( ph  ->  ( 1  /  ( abs `  A ) )  e.  RR )
12 difrp 9170 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( 1  /  ( abs `  A ) )  e.  RR )  -> 
( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
139, 11, 12sylancr 405 . . . . . . 7  |-  ( ph  ->  ( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
148, 13mpbid 145 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+ )
1514rpreccld 9184 . . . . 5  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR+ )
1615rpcnd 9175 . . . 4  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  CC )
17 divcnv 10891 . . . 4  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC  ->  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
1816, 17syl 14 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
19 nnex 8428 . . . . 5  |-  NN  e.  _V
2019mptex 5523 . . . 4  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
2120a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
22 simpr 108 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
2316adantr 270 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  e.  CC )
2422nncnd 8436 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
2522nnap0d 8468 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k #  0 )
2623, 24, 25divclapd 8257 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  CC )
27 oveq2 5660 . . . . . 6  |-  ( n  =  k  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
28 eqid 2088 . . . . . 6  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )
2927, 28fvmptg 5380 . . . . 5  |-  ( ( k  e.  NN  /\  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
)  e.  CC )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k )  =  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k ) )
3022, 26, 29syl2anc 403 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) ) `
 k )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
3115rpred 9173 . . . . 5  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR )
32 nndivre 8458 . . . . 5  |-  ( ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
3331, 32sylan 277 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  RR )
3430, 33eqeltrd 2164 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) ) `
 k )  e.  RR )
356adantr 270 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  RR+ )
3635rpcnd 9175 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  CC )
37 nnnn0 8680 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
3837adantl 271 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
3936, 38expcld 10086 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  CC )
40 oveq2 5660 . . . . . . 7  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
41 eqid 2088 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
4240, 41fvmptg 5380 . . . . . 6  |-  ( ( k  e.  NN  /\  ( ( abs `  A
) ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
)  =  ( ( abs `  A ) ^ k ) )
4322, 39, 42syl2anc 403 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
44 nnz 8769 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
45 rpexpcl 9974 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
466, 44, 45syl2an 283 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  RR+ )
4743, 46eqeltrd 2164 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR+ )
4847rpred 9173 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR )
49 nnrp 9143 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  RR+ )
50 rpmulcl 9158 . . . . . . 7  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+  /\  k  e.  RR+ )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
5114, 49, 50syl2an 283 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  e.  RR+ )
5251rpred 9173 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  e.  RR )
53 peano2re 7618 . . . . . . . . 9  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
5452, 53syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
55 rpexpcl 9974 . . . . . . . . . 10  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
5610, 44, 55syl2an 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  e.  RR+ )
5756rpred 9173 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  e.  RR )
5852lep1d 8392 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 ) )
5911adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( abs `  A
) )  e.  RR )
6010rpge0d 9177 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( 1  /  ( abs `  A
) ) )
6160adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  ( abs `  A ) ) )
62 bernneq2 10075 . . . . . . . . 9  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR  /\  k  e.  NN0  /\  0  <_ 
( 1  /  ( abs `  A ) ) )  ->  ( (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
6359, 38, 61, 62syl3anc 1174 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
6452, 54, 57, 58, 63letrd 7607 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
( 1  /  ( abs `  A ) ) ^ k ) )
656rpcnd 9175 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  e.  CC )
666rpap0d 9179 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
) #  0 )
67 exprecap 9996 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A ) #  0  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
6865, 66, 44, 67syl2an3an 1234 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  =  ( 1  /  ( ( abs `  A ) ^ k ) ) )
6964, 68breqtrd 3869 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
1  /  ( ( abs `  A ) ^ k ) ) )
7051, 46, 69lerec2d 9195 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  <_ 
( 1  /  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k ) ) )
7114rpcnd 9175 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 )  e.  CC )
7214rpap0d 9179 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 )
7371, 72jca 300 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 ) )
74 nncn 8430 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  CC )
75 nnap0 8451 . . . . . . 7  |-  ( k  e.  NN  ->  k #  0 )
7674, 75jca 300 . . . . . 6  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k #  0 ) )
77 recdivap2 8192 . . . . . 6  |-  ( ( ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 )  /\  ( k  e.  CC  /\  k #  0 ) )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  k
)  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  - 
1 )  x.  k
) ) )
7873, 76, 77syl2an 283 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k ) ) )
7970, 78breqtrrd 3871 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  <_ 
( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
8079, 43, 303brtr4d 3875 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k ) )
8147rpge0d 9177 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
) )
821, 2, 18, 21, 34, 48, 80, 81climsqz2 10724 . 2  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
83 nn0ex 8679 . . . . 5  |-  NN0  e.  _V
8483mptex 5523 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
8584a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
864adantr 270 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
8786, 38expcld 10086 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
88 oveq2 5660 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
89 eqid 2088 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
9088, 89fvmptg 5380 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
9138, 87, 90syl2anc 403 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
92 expcl 9973 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
934, 37, 92syl2an 283 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
9491, 93eqeltrd 2164 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
95 absexp 10512 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
964, 37, 95syl2an 283 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
9791fveq2d 5309 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
9896, 97, 433eqtr4rd 2131 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
991, 2, 85, 21, 94, 98climabs0 10696 . 2  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
10082, 99mpbird 165 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   _Vcvv 2619   class class class wbr 3845    |-> cmpt 3899   ` cfv 5015  (class class class)co 5652   CCcc 7348   RRcr 7349   0cc0 7350   1c1 7351    + caddc 7353    x. cmul 7355    < clt 7522    <_ cle 7523    - cmin 7653   # cap 8058    / cdiv 8139   NNcn 8422   NN0cn0 8673   ZZcz 8750   RR+crp 9134   ^cexp 9954   abscabs 10430    ~~> cli 10666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464  ax-caucvg 7465
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-3 8482  df-4 8483  df-n0 8674  df-z 8751  df-uz 9020  df-rp 9135  df-iseq 9853  df-seq3 9854  df-exp 9955  df-cj 10276  df-re 10277  df-im 10278  df-rsqrt 10431  df-abs 10432  df-clim 10667
This theorem is referenced by:  expcnvre  10897
  Copyright terms: Public domain W3C validator