| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcnvap0 | Unicode version | ||
| Description: A sequence of powers of a
complex number |
| Ref | Expression |
|---|---|
| expcnvap0.1 |
|
| expcnvap0.2 |
|
| expcnvap0.0 |
|
| Ref | Expression |
|---|---|
| expcnvap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9758 |
. . 3
| |
| 2 | 1zzd 9473 |
. . 3
| |
| 3 | expcnvap0.2 |
. . . . . . . 8
| |
| 4 | expcnvap0.1 |
. . . . . . . . . 10
| |
| 5 | expcnvap0.0 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | absrpclapd 11699 |
. . . . . . . . 9
|
| 7 | 6 | reclt1d 9906 |
. . . . . . . 8
|
| 8 | 3, 7 | mpbid 147 |
. . . . . . 7
|
| 9 | 1re 8145 |
. . . . . . . 8
| |
| 10 | 6 | rpreccld 9903 |
. . . . . . . . 9
|
| 11 | 10 | rpred 9892 |
. . . . . . . 8
|
| 12 | difrp 9888 |
. . . . . . . 8
| |
| 13 | 9, 11, 12 | sylancr 414 |
. . . . . . 7
|
| 14 | 8, 13 | mpbid 147 |
. . . . . 6
|
| 15 | 14 | rpreccld 9903 |
. . . . 5
|
| 16 | 15 | rpcnd 9894 |
. . . 4
|
| 17 | divcnv 12008 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | nnex 9116 |
. . . . 5
| |
| 20 | 19 | mptex 5865 |
. . . 4
|
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | simpr 110 |
. . . . 5
| |
| 23 | 16 | adantr 276 |
. . . . . 6
|
| 24 | 22 | nncnd 9124 |
. . . . . 6
|
| 25 | 22 | nnap0d 9156 |
. . . . . 6
|
| 26 | 23, 24, 25 | divclapd 8937 |
. . . . 5
|
| 27 | oveq2 6009 |
. . . . . 6
| |
| 28 | eqid 2229 |
. . . . . 6
| |
| 29 | 27, 28 | fvmptg 5710 |
. . . . 5
|
| 30 | 22, 26, 29 | syl2anc 411 |
. . . 4
|
| 31 | 15 | rpred 9892 |
. . . . 5
|
| 32 | nndivre 9146 |
. . . . 5
| |
| 33 | 31, 32 | sylan 283 |
. . . 4
|
| 34 | 30, 33 | eqeltrd 2306 |
. . 3
|
| 35 | 6 | adantr 276 |
. . . . . . . 8
|
| 36 | 35 | rpcnd 9894 |
. . . . . . 7
|
| 37 | nnnn0 9376 |
. . . . . . . 8
| |
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 36, 38 | expcld 10895 |
. . . . . 6
|
| 40 | oveq2 6009 |
. . . . . . 7
| |
| 41 | eqid 2229 |
. . . . . . 7
| |
| 42 | 40, 41 | fvmptg 5710 |
. . . . . 6
|
| 43 | 22, 39, 42 | syl2anc 411 |
. . . . 5
|
| 44 | nnz 9465 |
. . . . . 6
| |
| 45 | rpexpcl 10780 |
. . . . . 6
| |
| 46 | 6, 44, 45 | syl2an 289 |
. . . . 5
|
| 47 | 43, 46 | eqeltrd 2306 |
. . . 4
|
| 48 | 47 | rpred 9892 |
. . 3
|
| 49 | nnrp 9859 |
. . . . . . 7
| |
| 50 | rpmulcl 9874 |
. . . . . . 7
| |
| 51 | 14, 49, 50 | syl2an 289 |
. . . . . 6
|
| 52 | 51 | rpred 9892 |
. . . . . . . 8
|
| 53 | peano2re 8282 |
. . . . . . . . 9
| |
| 54 | 52, 53 | syl 14 |
. . . . . . . 8
|
| 55 | rpexpcl 10780 |
. . . . . . . . . 10
| |
| 56 | 10, 44, 55 | syl2an 289 |
. . . . . . . . 9
|
| 57 | 56 | rpred 9892 |
. . . . . . . 8
|
| 58 | 52 | lep1d 9078 |
. . . . . . . 8
|
| 59 | 11 | adantr 276 |
. . . . . . . . 9
|
| 60 | 10 | rpge0d 9896 |
. . . . . . . . . 10
|
| 61 | 60 | adantr 276 |
. . . . . . . . 9
|
| 62 | bernneq2 10883 |
. . . . . . . . 9
| |
| 63 | 59, 38, 61, 62 | syl3anc 1271 |
. . . . . . . 8
|
| 64 | 52, 54, 57, 58, 63 | letrd 8270 |
. . . . . . 7
|
| 65 | 6 | rpcnd 9894 |
. . . . . . . 8
|
| 66 | 6 | rpap0d 9898 |
. . . . . . . 8
|
| 67 | exprecap 10802 |
. . . . . . . 8
| |
| 68 | 65, 66, 44, 67 | syl2an3an 1332 |
. . . . . . 7
|
| 69 | 64, 68 | breqtrd 4109 |
. . . . . 6
|
| 70 | 51, 46, 69 | lerec2d 9914 |
. . . . 5
|
| 71 | 14 | rpcnd 9894 |
. . . . . . 7
|
| 72 | 14 | rpap0d 9898 |
. . . . . . 7
|
| 73 | 71, 72 | jca 306 |
. . . . . 6
|
| 74 | nncn 9118 |
. . . . . . 7
| |
| 75 | nnap0 9139 |
. . . . . . 7
| |
| 76 | 74, 75 | jca 306 |
. . . . . 6
|
| 77 | recdivap2 8872 |
. . . . . 6
| |
| 78 | 73, 76, 77 | syl2an 289 |
. . . . 5
|
| 79 | 70, 78 | breqtrrd 4111 |
. . . 4
|
| 80 | 79, 43, 30 | 3brtr4d 4115 |
. . 3
|
| 81 | 47 | rpge0d 9896 |
. . 3
|
| 82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11847 |
. 2
|
| 83 | nn0ex 9375 |
. . . . 5
| |
| 84 | 83 | mptex 5865 |
. . . 4
|
| 85 | 84 | a1i 9 |
. . 3
|
| 86 | 4 | adantr 276 |
. . . . . 6
|
| 87 | 86, 38 | expcld 10895 |
. . . . 5
|
| 88 | oveq2 6009 |
. . . . . 6
| |
| 89 | eqid 2229 |
. . . . . 6
| |
| 90 | 88, 89 | fvmptg 5710 |
. . . . 5
|
| 91 | 38, 87, 90 | syl2anc 411 |
. . . 4
|
| 92 | expcl 10779 |
. . . . 5
| |
| 93 | 4, 37, 92 | syl2an 289 |
. . . 4
|
| 94 | 91, 93 | eqeltrd 2306 |
. . 3
|
| 95 | absexp 11590 |
. . . . 5
| |
| 96 | 4, 37, 95 | syl2an 289 |
. . . 4
|
| 97 | 91 | fveq2d 5631 |
. . . 4
|
| 98 | 96, 97, 43 | 3eqtr4rd 2273 |
. . 3
|
| 99 | 1, 2, 85, 21, 94, 98 | climabs0 11818 |
. 2
|
| 100 | 82, 99 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-rp 9850 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 |
| This theorem is referenced by: expcnvre 12014 |
| Copyright terms: Public domain | W3C validator |