| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcnvap0 | Unicode version | ||
| Description: A sequence of powers of a
complex number |
| Ref | Expression |
|---|---|
| expcnvap0.1 |
|
| expcnvap0.2 |
|
| expcnvap0.0 |
|
| Ref | Expression |
|---|---|
| expcnvap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9719 |
. . 3
| |
| 2 | 1zzd 9434 |
. . 3
| |
| 3 | expcnvap0.2 |
. . . . . . . 8
| |
| 4 | expcnvap0.1 |
. . . . . . . . . 10
| |
| 5 | expcnvap0.0 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | absrpclapd 11614 |
. . . . . . . . 9
|
| 7 | 6 | reclt1d 9867 |
. . . . . . . 8
|
| 8 | 3, 7 | mpbid 147 |
. . . . . . 7
|
| 9 | 1re 8106 |
. . . . . . . 8
| |
| 10 | 6 | rpreccld 9864 |
. . . . . . . . 9
|
| 11 | 10 | rpred 9853 |
. . . . . . . 8
|
| 12 | difrp 9849 |
. . . . . . . 8
| |
| 13 | 9, 11, 12 | sylancr 414 |
. . . . . . 7
|
| 14 | 8, 13 | mpbid 147 |
. . . . . 6
|
| 15 | 14 | rpreccld 9864 |
. . . . 5
|
| 16 | 15 | rpcnd 9855 |
. . . 4
|
| 17 | divcnv 11923 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | nnex 9077 |
. . . . 5
| |
| 20 | 19 | mptex 5833 |
. . . 4
|
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | simpr 110 |
. . . . 5
| |
| 23 | 16 | adantr 276 |
. . . . . 6
|
| 24 | 22 | nncnd 9085 |
. . . . . 6
|
| 25 | 22 | nnap0d 9117 |
. . . . . 6
|
| 26 | 23, 24, 25 | divclapd 8898 |
. . . . 5
|
| 27 | oveq2 5975 |
. . . . . 6
| |
| 28 | eqid 2207 |
. . . . . 6
| |
| 29 | 27, 28 | fvmptg 5678 |
. . . . 5
|
| 30 | 22, 26, 29 | syl2anc 411 |
. . . 4
|
| 31 | 15 | rpred 9853 |
. . . . 5
|
| 32 | nndivre 9107 |
. . . . 5
| |
| 33 | 31, 32 | sylan 283 |
. . . 4
|
| 34 | 30, 33 | eqeltrd 2284 |
. . 3
|
| 35 | 6 | adantr 276 |
. . . . . . . 8
|
| 36 | 35 | rpcnd 9855 |
. . . . . . 7
|
| 37 | nnnn0 9337 |
. . . . . . . 8
| |
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 36, 38 | expcld 10855 |
. . . . . 6
|
| 40 | oveq2 5975 |
. . . . . . 7
| |
| 41 | eqid 2207 |
. . . . . . 7
| |
| 42 | 40, 41 | fvmptg 5678 |
. . . . . 6
|
| 43 | 22, 39, 42 | syl2anc 411 |
. . . . 5
|
| 44 | nnz 9426 |
. . . . . 6
| |
| 45 | rpexpcl 10740 |
. . . . . 6
| |
| 46 | 6, 44, 45 | syl2an 289 |
. . . . 5
|
| 47 | 43, 46 | eqeltrd 2284 |
. . . 4
|
| 48 | 47 | rpred 9853 |
. . 3
|
| 49 | nnrp 9820 |
. . . . . . 7
| |
| 50 | rpmulcl 9835 |
. . . . . . 7
| |
| 51 | 14, 49, 50 | syl2an 289 |
. . . . . 6
|
| 52 | 51 | rpred 9853 |
. . . . . . . 8
|
| 53 | peano2re 8243 |
. . . . . . . . 9
| |
| 54 | 52, 53 | syl 14 |
. . . . . . . 8
|
| 55 | rpexpcl 10740 |
. . . . . . . . . 10
| |
| 56 | 10, 44, 55 | syl2an 289 |
. . . . . . . . 9
|
| 57 | 56 | rpred 9853 |
. . . . . . . 8
|
| 58 | 52 | lep1d 9039 |
. . . . . . . 8
|
| 59 | 11 | adantr 276 |
. . . . . . . . 9
|
| 60 | 10 | rpge0d 9857 |
. . . . . . . . . 10
|
| 61 | 60 | adantr 276 |
. . . . . . . . 9
|
| 62 | bernneq2 10843 |
. . . . . . . . 9
| |
| 63 | 59, 38, 61, 62 | syl3anc 1250 |
. . . . . . . 8
|
| 64 | 52, 54, 57, 58, 63 | letrd 8231 |
. . . . . . 7
|
| 65 | 6 | rpcnd 9855 |
. . . . . . . 8
|
| 66 | 6 | rpap0d 9859 |
. . . . . . . 8
|
| 67 | exprecap 10762 |
. . . . . . . 8
| |
| 68 | 65, 66, 44, 67 | syl2an3an 1311 |
. . . . . . 7
|
| 69 | 64, 68 | breqtrd 4085 |
. . . . . 6
|
| 70 | 51, 46, 69 | lerec2d 9875 |
. . . . 5
|
| 71 | 14 | rpcnd 9855 |
. . . . . . 7
|
| 72 | 14 | rpap0d 9859 |
. . . . . . 7
|
| 73 | 71, 72 | jca 306 |
. . . . . 6
|
| 74 | nncn 9079 |
. . . . . . 7
| |
| 75 | nnap0 9100 |
. . . . . . 7
| |
| 76 | 74, 75 | jca 306 |
. . . . . 6
|
| 77 | recdivap2 8833 |
. . . . . 6
| |
| 78 | 73, 76, 77 | syl2an 289 |
. . . . 5
|
| 79 | 70, 78 | breqtrrd 4087 |
. . . 4
|
| 80 | 79, 43, 30 | 3brtr4d 4091 |
. . 3
|
| 81 | 47 | rpge0d 9857 |
. . 3
|
| 82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11762 |
. 2
|
| 83 | nn0ex 9336 |
. . . . 5
| |
| 84 | 83 | mptex 5833 |
. . . 4
|
| 85 | 84 | a1i 9 |
. . 3
|
| 86 | 4 | adantr 276 |
. . . . . 6
|
| 87 | 86, 38 | expcld 10855 |
. . . . 5
|
| 88 | oveq2 5975 |
. . . . . 6
| |
| 89 | eqid 2207 |
. . . . . 6
| |
| 90 | 88, 89 | fvmptg 5678 |
. . . . 5
|
| 91 | 38, 87, 90 | syl2anc 411 |
. . . 4
|
| 92 | expcl 10739 |
. . . . 5
| |
| 93 | 4, 37, 92 | syl2an 289 |
. . . 4
|
| 94 | 91, 93 | eqeltrd 2284 |
. . 3
|
| 95 | absexp 11505 |
. . . . 5
| |
| 96 | 4, 37, 95 | syl2an 289 |
. . . 4
|
| 97 | 91 | fveq2d 5603 |
. . . 4
|
| 98 | 96, 97, 43 | 3eqtr4rd 2251 |
. . 3
|
| 99 | 1, 2, 85, 21, 94, 98 | climabs0 11733 |
. 2
|
| 100 | 82, 99 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 |
| This theorem is referenced by: expcnvre 11929 |
| Copyright terms: Public domain | W3C validator |