| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcnvap0 | Unicode version | ||
| Description: A sequence of powers of a
complex number |
| Ref | Expression |
|---|---|
| expcnvap0.1 |
|
| expcnvap0.2 |
|
| expcnvap0.0 |
|
| Ref | Expression |
|---|---|
| expcnvap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9686 |
. . 3
| |
| 2 | 1zzd 9401 |
. . 3
| |
| 3 | expcnvap0.2 |
. . . . . . . 8
| |
| 4 | expcnvap0.1 |
. . . . . . . . . 10
| |
| 5 | expcnvap0.0 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | absrpclapd 11532 |
. . . . . . . . 9
|
| 7 | 6 | reclt1d 9834 |
. . . . . . . 8
|
| 8 | 3, 7 | mpbid 147 |
. . . . . . 7
|
| 9 | 1re 8073 |
. . . . . . . 8
| |
| 10 | 6 | rpreccld 9831 |
. . . . . . . . 9
|
| 11 | 10 | rpred 9820 |
. . . . . . . 8
|
| 12 | difrp 9816 |
. . . . . . . 8
| |
| 13 | 9, 11, 12 | sylancr 414 |
. . . . . . 7
|
| 14 | 8, 13 | mpbid 147 |
. . . . . 6
|
| 15 | 14 | rpreccld 9831 |
. . . . 5
|
| 16 | 15 | rpcnd 9822 |
. . . 4
|
| 17 | divcnv 11841 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | nnex 9044 |
. . . . 5
| |
| 20 | 19 | mptex 5812 |
. . . 4
|
| 21 | 20 | a1i 9 |
. . 3
|
| 22 | simpr 110 |
. . . . 5
| |
| 23 | 16 | adantr 276 |
. . . . . 6
|
| 24 | 22 | nncnd 9052 |
. . . . . 6
|
| 25 | 22 | nnap0d 9084 |
. . . . . 6
|
| 26 | 23, 24, 25 | divclapd 8865 |
. . . . 5
|
| 27 | oveq2 5954 |
. . . . . 6
| |
| 28 | eqid 2205 |
. . . . . 6
| |
| 29 | 27, 28 | fvmptg 5657 |
. . . . 5
|
| 30 | 22, 26, 29 | syl2anc 411 |
. . . 4
|
| 31 | 15 | rpred 9820 |
. . . . 5
|
| 32 | nndivre 9074 |
. . . . 5
| |
| 33 | 31, 32 | sylan 283 |
. . . 4
|
| 34 | 30, 33 | eqeltrd 2282 |
. . 3
|
| 35 | 6 | adantr 276 |
. . . . . . . 8
|
| 36 | 35 | rpcnd 9822 |
. . . . . . 7
|
| 37 | nnnn0 9304 |
. . . . . . . 8
| |
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 36, 38 | expcld 10820 |
. . . . . 6
|
| 40 | oveq2 5954 |
. . . . . . 7
| |
| 41 | eqid 2205 |
. . . . . . 7
| |
| 42 | 40, 41 | fvmptg 5657 |
. . . . . 6
|
| 43 | 22, 39, 42 | syl2anc 411 |
. . . . 5
|
| 44 | nnz 9393 |
. . . . . 6
| |
| 45 | rpexpcl 10705 |
. . . . . 6
| |
| 46 | 6, 44, 45 | syl2an 289 |
. . . . 5
|
| 47 | 43, 46 | eqeltrd 2282 |
. . . 4
|
| 48 | 47 | rpred 9820 |
. . 3
|
| 49 | nnrp 9787 |
. . . . . . 7
| |
| 50 | rpmulcl 9802 |
. . . . . . 7
| |
| 51 | 14, 49, 50 | syl2an 289 |
. . . . . 6
|
| 52 | 51 | rpred 9820 |
. . . . . . . 8
|
| 53 | peano2re 8210 |
. . . . . . . . 9
| |
| 54 | 52, 53 | syl 14 |
. . . . . . . 8
|
| 55 | rpexpcl 10705 |
. . . . . . . . . 10
| |
| 56 | 10, 44, 55 | syl2an 289 |
. . . . . . . . 9
|
| 57 | 56 | rpred 9820 |
. . . . . . . 8
|
| 58 | 52 | lep1d 9006 |
. . . . . . . 8
|
| 59 | 11 | adantr 276 |
. . . . . . . . 9
|
| 60 | 10 | rpge0d 9824 |
. . . . . . . . . 10
|
| 61 | 60 | adantr 276 |
. . . . . . . . 9
|
| 62 | bernneq2 10808 |
. . . . . . . . 9
| |
| 63 | 59, 38, 61, 62 | syl3anc 1250 |
. . . . . . . 8
|
| 64 | 52, 54, 57, 58, 63 | letrd 8198 |
. . . . . . 7
|
| 65 | 6 | rpcnd 9822 |
. . . . . . . 8
|
| 66 | 6 | rpap0d 9826 |
. . . . . . . 8
|
| 67 | exprecap 10727 |
. . . . . . . 8
| |
| 68 | 65, 66, 44, 67 | syl2an3an 1311 |
. . . . . . 7
|
| 69 | 64, 68 | breqtrd 4071 |
. . . . . 6
|
| 70 | 51, 46, 69 | lerec2d 9842 |
. . . . 5
|
| 71 | 14 | rpcnd 9822 |
. . . . . . 7
|
| 72 | 14 | rpap0d 9826 |
. . . . . . 7
|
| 73 | 71, 72 | jca 306 |
. . . . . 6
|
| 74 | nncn 9046 |
. . . . . . 7
| |
| 75 | nnap0 9067 |
. . . . . . 7
| |
| 76 | 74, 75 | jca 306 |
. . . . . 6
|
| 77 | recdivap2 8800 |
. . . . . 6
| |
| 78 | 73, 76, 77 | syl2an 289 |
. . . . 5
|
| 79 | 70, 78 | breqtrrd 4073 |
. . . 4
|
| 80 | 79, 43, 30 | 3brtr4d 4077 |
. . 3
|
| 81 | 47 | rpge0d 9824 |
. . 3
|
| 82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11680 |
. 2
|
| 83 | nn0ex 9303 |
. . . . 5
| |
| 84 | 83 | mptex 5812 |
. . . 4
|
| 85 | 84 | a1i 9 |
. . 3
|
| 86 | 4 | adantr 276 |
. . . . . 6
|
| 87 | 86, 38 | expcld 10820 |
. . . . 5
|
| 88 | oveq2 5954 |
. . . . . 6
| |
| 89 | eqid 2205 |
. . . . . 6
| |
| 90 | 88, 89 | fvmptg 5657 |
. . . . 5
|
| 91 | 38, 87, 90 | syl2anc 411 |
. . . 4
|
| 92 | expcl 10704 |
. . . . 5
| |
| 93 | 4, 37, 92 | syl2an 289 |
. . . 4
|
| 94 | 91, 93 | eqeltrd 2282 |
. . 3
|
| 95 | absexp 11423 |
. . . . 5
| |
| 96 | 4, 37, 95 | syl2an 289 |
. . . 4
|
| 97 | 91 | fveq2d 5582 |
. . . 4
|
| 98 | 96, 97, 43 | 3eqtr4rd 2249 |
. . 3
|
| 99 | 1, 2, 85, 21, 94, 98 | climabs0 11651 |
. 2
|
| 100 | 82, 99 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-rp 9778 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 |
| This theorem is referenced by: expcnvre 11847 |
| Copyright terms: Public domain | W3C validator |