ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 Unicode version

Theorem expcnvap0 11542
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1  |-  ( ph  ->  A  e.  CC )
expcnvap0.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
expcnvap0.0  |-  ( ph  ->  A #  0 )
Assertion
Ref Expression
expcnvap0  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnvap0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 9593 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9310 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 expcnvap0.2 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  <  1 )
4 expcnvap0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
5 expcnvap0.0 . . . . . . . . . 10  |-  ( ph  ->  A #  0 )
64, 5absrpclapd 11229 . . . . . . . . 9  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
76reclt1d 9740 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  A
)  <  1  <->  1  <  ( 1  /  ( abs `  A ) ) ) )
83, 7mpbid 147 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  /  ( abs `  A
) ) )
9 1re 7986 . . . . . . . 8  |-  1  e.  RR
106rpreccld 9737 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  ( abs `  A ) )  e.  RR+ )
1110rpred 9726 . . . . . . . 8  |-  ( ph  ->  ( 1  /  ( abs `  A ) )  e.  RR )
12 difrp 9722 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( 1  /  ( abs `  A ) )  e.  RR )  -> 
( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
139, 11, 12sylancr 414 . . . . . . 7  |-  ( ph  ->  ( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
148, 13mpbid 147 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+ )
1514rpreccld 9737 . . . . 5  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR+ )
1615rpcnd 9728 . . . 4  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  CC )
17 divcnv 11537 . . . 4  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC  ->  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
1816, 17syl 14 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
19 nnex 8955 . . . . 5  |-  NN  e.  _V
2019mptex 5763 . . . 4  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
2120a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
2316adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  e.  CC )
2422nncnd 8963 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
2522nnap0d 8995 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k #  0 )
2623, 24, 25divclapd 8777 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  CC )
27 oveq2 5904 . . . . . 6  |-  ( n  =  k  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
28 eqid 2189 . . . . . 6  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )
2927, 28fvmptg 5613 . . . . 5  |-  ( ( k  e.  NN  /\  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
)  e.  CC )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k )  =  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k ) )
3022, 26, 29syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) ) `
 k )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
3115rpred 9726 . . . . 5  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR )
32 nndivre 8985 . . . . 5  |-  ( ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
3331, 32sylan 283 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  RR )
3430, 33eqeltrd 2266 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) ) `
 k )  e.  RR )
356adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  RR+ )
3635rpcnd 9728 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  CC )
37 nnnn0 9213 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
3837adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
3936, 38expcld 10685 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  CC )
40 oveq2 5904 . . . . . . 7  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
41 eqid 2189 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
4240, 41fvmptg 5613 . . . . . 6  |-  ( ( k  e.  NN  /\  ( ( abs `  A
) ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
)  =  ( ( abs `  A ) ^ k ) )
4322, 39, 42syl2anc 411 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
44 nnz 9302 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
45 rpexpcl 10570 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
466, 44, 45syl2an 289 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  RR+ )
4743, 46eqeltrd 2266 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR+ )
4847rpred 9726 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR )
49 nnrp 9693 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  RR+ )
50 rpmulcl 9708 . . . . . . 7  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+  /\  k  e.  RR+ )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
5114, 49, 50syl2an 289 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  e.  RR+ )
5251rpred 9726 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  e.  RR )
53 peano2re 8123 . . . . . . . . 9  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
5452, 53syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
55 rpexpcl 10570 . . . . . . . . . 10  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
5610, 44, 55syl2an 289 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  e.  RR+ )
5756rpred 9726 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  e.  RR )
5852lep1d 8918 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 ) )
5911adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( abs `  A
) )  e.  RR )
6010rpge0d 9730 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( 1  /  ( abs `  A
) ) )
6160adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  ( abs `  A ) ) )
62 bernneq2 10673 . . . . . . . . 9  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR  /\  k  e.  NN0  /\  0  <_ 
( 1  /  ( abs `  A ) ) )  ->  ( (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
6359, 38, 61, 62syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
6452, 54, 57, 58, 63letrd 8111 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
( 1  /  ( abs `  A ) ) ^ k ) )
656rpcnd 9728 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  e.  CC )
666rpap0d 9732 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
) #  0 )
67 exprecap 10592 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A ) #  0  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
6865, 66, 44, 67syl2an3an 1309 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  =  ( 1  /  ( ( abs `  A ) ^ k ) ) )
6964, 68breqtrd 4044 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
1  /  ( ( abs `  A ) ^ k ) ) )
7051, 46, 69lerec2d 9748 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  <_ 
( 1  /  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k ) ) )
7114rpcnd 9728 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 )  e.  CC )
7214rpap0d 9732 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 )
7371, 72jca 306 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 ) )
74 nncn 8957 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  CC )
75 nnap0 8978 . . . . . . 7  |-  ( k  e.  NN  ->  k #  0 )
7674, 75jca 306 . . . . . 6  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k #  0 ) )
77 recdivap2 8712 . . . . . 6  |-  ( ( ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 )  /\  ( k  e.  CC  /\  k #  0 ) )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  k
)  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  - 
1 )  x.  k
) ) )
7873, 76, 77syl2an 289 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k ) ) )
7970, 78breqtrrd 4046 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  <_ 
( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
8079, 43, 303brtr4d 4050 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k ) )
8147rpge0d 9730 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
) )
821, 2, 18, 21, 34, 48, 80, 81climsqz2 11376 . 2  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
83 nn0ex 9212 . . . . 5  |-  NN0  e.  _V
8483mptex 5763 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
8584a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
864adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
8786, 38expcld 10685 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
88 oveq2 5904 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
89 eqid 2189 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
9088, 89fvmptg 5613 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
9138, 87, 90syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
92 expcl 10569 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
934, 37, 92syl2an 289 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
9491, 93eqeltrd 2266 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
95 absexp 11120 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
964, 37, 95syl2an 289 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
9791fveq2d 5538 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
9896, 97, 433eqtr4rd 2233 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
991, 2, 85, 21, 94, 98climabs0 11347 . 2  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
10082, 99mpbird 167 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   _Vcvv 2752   class class class wbr 4018    |-> cmpt 4079   ` cfv 5235  (class class class)co 5896   CCcc 7839   RRcr 7840   0cc0 7841   1c1 7842    + caddc 7844    x. cmul 7846    < clt 8022    <_ cle 8023    - cmin 8158   # cap 8568    / cdiv 8659   NNcn 8949   NN0cn0 9206   ZZcz 9283   RR+crp 9683   ^cexp 10550   abscabs 11038    ~~> cli 11318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-rp 9684  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319
This theorem is referenced by:  expcnvre  11543
  Copyright terms: Public domain W3C validator