ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 Unicode version

Theorem expcnvap0 11465
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1  |-  ( ph  ->  A  e.  CC )
expcnvap0.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
expcnvap0.0  |-  ( ph  ->  A #  0 )
Assertion
Ref Expression
expcnvap0  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnvap0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 9522 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9239 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 expcnvap0.2 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  <  1 )
4 expcnvap0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
5 expcnvap0.0 . . . . . . . . . 10  |-  ( ph  ->  A #  0 )
64, 5absrpclapd 11152 . . . . . . . . 9  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
76reclt1d 9667 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  A
)  <  1  <->  1  <  ( 1  /  ( abs `  A ) ) ) )
83, 7mpbid 146 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  /  ( abs `  A
) ) )
9 1re 7919 . . . . . . . 8  |-  1  e.  RR
106rpreccld 9664 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  ( abs `  A ) )  e.  RR+ )
1110rpred 9653 . . . . . . . 8  |-  ( ph  ->  ( 1  /  ( abs `  A ) )  e.  RR )
12 difrp 9649 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( 1  /  ( abs `  A ) )  e.  RR )  -> 
( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
139, 11, 12sylancr 412 . . . . . . 7  |-  ( ph  ->  ( 1  <  (
1  /  ( abs `  A ) )  <->  ( (
1  /  ( abs `  A ) )  - 
1 )  e.  RR+ ) )
148, 13mpbid 146 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+ )
1514rpreccld 9664 . . . . 5  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR+ )
1615rpcnd 9655 . . . 4  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  CC )
17 divcnv 11460 . . . 4  |-  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  e.  CC  ->  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
1816, 17syl 14 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )  ~~>  0 )
19 nnex 8884 . . . . 5  |-  NN  e.  _V
2019mptex 5722 . . . 4  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
2120a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
22 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
2316adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  e.  CC )
2422nncnd 8892 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
2522nnap0d 8924 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  k #  0 )
2623, 24, 25divclapd 8707 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  CC )
27 oveq2 5861 . . . . . 6  |-  ( n  =  k  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
28 eqid 2170 . . . . . 6  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  n
) )
2927, 28fvmptg 5572 . . . . 5  |-  ( ( k  e.  NN  /\  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
)  e.  CC )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k )  =  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k ) )
3022, 26, 29syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) ) `
 k )  =  ( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
3115rpred 9653 . . . . 5  |-  ( ph  ->  ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR )
32 nndivre 8914 . . . . 5  |-  ( ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  e.  RR  /\  k  e.  NN )  ->  (
( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  k )  e.  RR )
3331, 32sylan 281 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  e.  RR )
3430, 33eqeltrd 2247 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
( 1  /  ( abs `  A ) )  -  1 ) )  /  n ) ) `
 k )  e.  RR )
356adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  RR+ )
3635rpcnd 9655 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  CC )
37 nnnn0 9142 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
3837adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
3936, 38expcld 10609 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  CC )
40 oveq2 5861 . . . . . . 7  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
41 eqid 2170 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
4240, 41fvmptg 5572 . . . . . 6  |-  ( ( k  e.  NN  /\  ( ( abs `  A
) ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
)  =  ( ( abs `  A ) ^ k ) )
4322, 39, 42syl2anc 409 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
44 nnz 9231 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
45 rpexpcl 10495 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( abs `  A
) ^ k )  e.  RR+ )
466, 44, 45syl2an 287 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  RR+ )
4743, 46eqeltrd 2247 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR+ )
4847rpred 9653 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  e.  RR )
49 nnrp 9620 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  RR+ )
50 rpmulcl 9635 . . . . . . 7  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  e.  RR+  /\  k  e.  RR+ )  ->  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR+ )
5114, 49, 50syl2an 287 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  e.  RR+ )
5251rpred 9653 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  e.  RR )
53 peano2re 8055 . . . . . . . . 9  |-  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  e.  RR  ->  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
5452, 53syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  e.  RR )
55 rpexpcl 10495 . . . . . . . . . 10  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  e.  RR+ )
5610, 44, 55syl2an 287 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  e.  RR+ )
5756rpred 9653 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  e.  RR )
5852lep1d 8847 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
( ( ( 1  /  ( abs `  A
) )  -  1 )  x.  k )  +  1 ) )
5911adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( abs `  A
) )  e.  RR )
6010rpge0d 9657 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( 1  /  ( abs `  A
) ) )
6160adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  ( abs `  A ) ) )
62 bernneq2 10597 . . . . . . . . 9  |-  ( ( ( 1  /  ( abs `  A ) )  e.  RR  /\  k  e.  NN0  /\  0  <_ 
( 1  /  ( abs `  A ) ) )  ->  ( (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
6359, 38, 61, 62syl3anc 1233 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( 1  / 
( abs `  A
) )  -  1 )  x.  k )  +  1 )  <_ 
( ( 1  / 
( abs `  A
) ) ^ k
) )
6452, 54, 57, 58, 63letrd 8043 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
( 1  /  ( abs `  A ) ) ^ k ) )
656rpcnd 9655 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  e.  CC )
666rpap0d 9659 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
) #  0 )
67 exprecap 10517 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A ) #  0  /\  k  e.  ZZ )  ->  (
( 1  /  ( abs `  A ) ) ^ k )  =  ( 1  /  (
( abs `  A
) ^ k ) ) )
6865, 66, 44, 67syl2an3an 1293 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( abs `  A ) ) ^
k )  =  ( 1  /  ( ( abs `  A ) ^ k ) ) )
6964, 68breqtrd 4015 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k )  <_  (
1  /  ( ( abs `  A ) ^ k ) ) )
7051, 46, 69lerec2d 9675 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  <_ 
( 1  /  (
( ( 1  / 
( abs `  A
) )  -  1 )  x.  k ) ) )
7114rpcnd 9655 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 )  e.  CC )
7214rpap0d 9659 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 )
7371, 72jca 304 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 ) )
74 nncn 8886 . . . . . . 7  |-  ( k  e.  NN  ->  k  e.  CC )
75 nnap0 8907 . . . . . . 7  |-  ( k  e.  NN  ->  k #  0 )
7674, 75jca 304 . . . . . 6  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k #  0 ) )
77 recdivap2 8642 . . . . . 6  |-  ( ( ( ( ( 1  /  ( abs `  A
) )  -  1 )  e.  CC  /\  ( ( 1  / 
( abs `  A
) )  -  1 ) #  0 )  /\  ( k  e.  CC  /\  k #  0 ) )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A
) )  -  1 ) )  /  k
)  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  - 
1 )  x.  k
) ) )
7873, 76, 77syl2an 287 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  / 
k )  =  ( 1  /  ( ( ( 1  /  ( abs `  A ) )  -  1 )  x.  k ) ) )
7970, 78breqtrrd 4017 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  <_ 
( ( 1  / 
( ( 1  / 
( abs `  A
) )  -  1 ) )  /  k
) )
8079, 43, 303brtr4d 4021 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( 1  /  ( ( 1  /  ( abs `  A ) )  - 
1 ) )  /  n ) ) `  k ) )
8147rpge0d 9657 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
) )
821, 2, 18, 21, 34, 48, 80, 81climsqz2 11299 . 2  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
83 nn0ex 9141 . . . . 5  |-  NN0  e.  _V
8483mptex 5722 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
8584a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
864adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
8786, 38expcld 10609 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
88 oveq2 5861 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
89 eqid 2170 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
9088, 89fvmptg 5572 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
9138, 87, 90syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
92 expcl 10494 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
934, 37, 92syl2an 287 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
9491, 93eqeltrd 2247 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
95 absexp 11043 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
964, 37, 95syl2an 287 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
9791fveq2d 5500 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
9896, 97, 433eqtr4rd 2214 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
991, 2, 85, 21, 94, 98climabs0 11270 . 2  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
10082, 99mpbird 166 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   # cap 8500    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   RR+crp 9610   ^cexp 10475   abscabs 10961    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  expcnvre  11466
  Copyright terms: Public domain W3C validator