ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr1 Unicode version

Theorem cncongr1 11971
Description: One direction of the bicondition in cncongr 11973. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
cncongr1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  ->  ( A  mod  M )  =  ( B  mod  M ) ) )

Proof of Theorem cncongr1
Dummy variables  k  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zmulcl 9214 . . . 4  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  C
)  e.  ZZ )
213adant2 1001 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  C )  e.  ZZ )
3 zmulcl 9214 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  ZZ )
433adant1 1000 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C )  e.  ZZ )
5 simpl 108 . . 3  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  ->  N  e.  NN )
6 congr 11968 . . 3  |-  ( ( ( A  x.  C
)  e.  ZZ  /\  ( B  x.  C
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )  <->  E. k  e.  ZZ  (
k  x.  N )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) ) )
72, 4, 5, 6syl2an3an 1280 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  <->  E. k  e.  ZZ  ( k  x.  N
)  =  ( ( A  x.  C )  -  ( B  x.  C ) ) ) )
8 simpl 108 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  N  e.  NN )  ->  C  e.  ZZ )
9 nnz 9180 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  ZZ )
10 nnne0 8855 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  =/=  0 )
119, 10jca 304 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
1211adantl 275 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  N  e.  NN )  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
13 eqidd 2158 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  N  e.  NN )  ->  ( C  gcd  N
)  =  ( C  gcd  N ) )
148, 12, 133jca 1162 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  N  e.  NN )  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 )  /\  ( C  gcd  N )  =  ( C  gcd  N ) ) )
1514ex 114 . . . . . . . . . 10  |-  ( C  e.  ZZ  ->  ( N  e.  NN  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 )  /\  ( C  gcd  N )  =  ( C  gcd  N ) ) ) )
16153ad2ant3 1005 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( N  e.  NN  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 )  /\  ( C  gcd  N )  =  ( C  gcd  N ) ) ) )
1716com12 30 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 )  /\  ( C  gcd  N )  =  ( C  gcd  N ) ) ) )
1817adantr 274 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  -> 
( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 )  /\  ( C  gcd  N )  =  ( C  gcd  N
) ) ) )
1918impcom 124 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 )  /\  ( C  gcd  N )  =  ( C  gcd  N
) ) )
20 divgcdcoprmex 11970 . . . . . 6  |-  ( ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 )  /\  ( C  gcd  N )  =  ( C  gcd  N ) )  ->  E. r  e.  ZZ  E. s  e.  ZZ  ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N )  x.  s )  /\  (
r  gcd  s )  =  1 ) )
2119, 20syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  E. r  e.  ZZ  E. s  e.  ZZ  ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N )  x.  s )  /\  (
r  gcd  s )  =  1 ) )
2221adantr 274 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  E. r  e.  ZZ  E. s  e.  ZZ  ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N )  x.  s )  /\  (
r  gcd  s )  =  1 ) )
23 oveq2 5829 . . . . . . . . . 10  |-  ( N  =  ( ( C  gcd  N )  x.  s )  ->  (
k  x.  N )  =  ( k  x.  ( ( C  gcd  N )  x.  s ) ) )
24233ad2ant2 1004 . . . . . . . . 9  |-  ( ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N )  x.  s )  /\  (
r  gcd  s )  =  1 )  -> 
( k  x.  N
)  =  ( k  x.  ( ( C  gcd  N )  x.  s ) ) )
2524adantl 275 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
k  x.  N )  =  ( k  x.  ( ( C  gcd  N )  x.  s ) ) )
26 oveq2 5829 . . . . . . . . . . 11  |-  ( C  =  ( ( C  gcd  N )  x.  r )  ->  ( A  x.  C )  =  ( A  x.  ( ( C  gcd  N )  x.  r ) ) )
27 oveq2 5829 . . . . . . . . . . 11  |-  ( C  =  ( ( C  gcd  N )  x.  r )  ->  ( B  x.  C )  =  ( B  x.  ( ( C  gcd  N )  x.  r ) ) )
2826, 27oveq12d 5839 . . . . . . . . . 10  |-  ( C  =  ( ( C  gcd  N )  x.  r )  ->  (
( A  x.  C
)  -  ( B  x.  C ) )  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  (
( C  gcd  N
)  x.  r ) ) ) )
29283ad2ant1 1003 . . . . . . . . 9  |-  ( ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N )  x.  s )  /\  (
r  gcd  s )  =  1 )  -> 
( ( A  x.  C )  -  ( B  x.  C )
)  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  ( ( C  gcd  N )  x.  r ) ) ) )
3029adantl 275 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( A  x.  C
)  -  ( B  x.  C ) )  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  (
( C  gcd  N
)  x.  r ) ) ) )
3125, 30eqeq12d 2172 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( k  x.  N
)  =  ( ( A  x.  C )  -  ( B  x.  C ) )  <->  ( k  x.  ( ( C  gcd  N )  x.  s ) )  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  ( ( C  gcd  N )  x.  r ) ) ) ) )
32 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
3332zcnd 9281 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  k  e.  CC )
3433adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
k  e.  CC )
35 simp3 984 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  ZZ )
3635adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  C  e.  ZZ )
379ad2antrl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  N  e.  ZZ )
3836, 37gcdcld 11843 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  gcd  N )  e.  NN0 )
3938nn0cnd 9139 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  gcd  N )  e.  CC )
4039ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( C  gcd  N
)  e.  CC )
41 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( r  e.  ZZ  /\  s  e.  ZZ )  ->  s  e.  ZZ )
4241zcnd 9281 . . . . . . . . . . . . 13  |-  ( ( r  e.  ZZ  /\  s  e.  ZZ )  ->  s  e.  CC )
4342adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
s  e.  CC )
4434, 40, 43mul12d 8021 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( k  x.  (
( C  gcd  N
)  x.  s ) )  =  ( ( C  gcd  N )  x.  ( k  x.  s ) ) )
45 simp1 982 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  A  e.  ZZ )
4645zcnd 9281 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  A  e.  CC )
4746ad3antrrr 484 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  A  e.  CC )
4835ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  C  e.  ZZ )
495nnzd 9279 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  ->  N  e.  ZZ )
5049adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  N  e.  ZZ )
5150adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
5248, 51gcdcld 11843 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  ( C  gcd  N )  e.  NN0 )
5352nn0cnd 9139 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  ( C  gcd  N )  e.  CC )
5453adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( C  gcd  N
)  e.  CC )
55 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  ZZ  /\  s  e.  ZZ )  ->  r  e.  ZZ )
5655zcnd 9281 . . . . . . . . . . . . . 14  |-  ( ( r  e.  ZZ  /\  s  e.  ZZ )  ->  r  e.  CC )
5756adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
r  e.  CC )
5847, 54, 57mul12d 8021 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( A  x.  (
( C  gcd  N
)  x.  r ) )  =  ( ( C  gcd  N )  x.  ( A  x.  r ) ) )
59 simp2 983 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  B  e.  ZZ )
6059zcnd 9281 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  B  e.  CC )
6160ad3antrrr 484 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  B  e.  CC )
6236, 50gcdcld 11843 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  gcd  N )  e.  NN0 )
6362nn0cnd 9139 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  gcd  N )  e.  CC )
6463ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( C  gcd  N
)  e.  CC )
6561, 64, 57mul12d 8021 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( B  x.  (
( C  gcd  N
)  x.  r ) )  =  ( ( C  gcd  N )  x.  ( B  x.  r ) ) )
6658, 65oveq12d 5839 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  ( ( C  gcd  N )  x.  r ) ) )  =  ( ( ( C  gcd  N )  x.  ( A  x.  r ) )  -  ( ( C  gcd  N )  x.  ( B  x.  r ) ) ) )
6744, 66eqeq12d 2172 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( k  x.  ( ( C  gcd  N )  x.  s ) )  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  ( ( C  gcd  N )  x.  r ) ) )  <->  ( ( C  gcd  N )  x.  ( k  x.  s
) )  =  ( ( ( C  gcd  N )  x.  ( A  x.  r ) )  -  ( ( C  gcd  N )  x.  ( B  x.  r
) ) ) ) )
6845ad3antrrr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  A  e.  ZZ )
6955adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
r  e.  ZZ )
7068, 69zmulcld 9286 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( A  x.  r
)  e.  ZZ )
7170zcnd 9281 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( A  x.  r
)  e.  CC )
7259ad3antrrr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  B  e.  ZZ )
7372, 69zmulcld 9286 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( B  x.  r
)  e.  ZZ )
7473zcnd 9281 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( B  x.  r
)  e.  CC )
7564, 71, 74subdid 8283 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( C  gcd  N )  x.  ( ( A  x.  r )  -  ( B  x.  r ) ) )  =  ( ( ( C  gcd  N )  x.  ( A  x.  r ) )  -  ( ( C  gcd  N )  x.  ( B  x.  r ) ) ) )
7675eqcomd 2163 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( ( C  gcd  N )  x.  ( A  x.  r
) )  -  (
( C  gcd  N
)  x.  ( B  x.  r ) ) )  =  ( ( C  gcd  N )  x.  ( ( A  x.  r )  -  ( B  x.  r
) ) ) )
7776eqeq2d 2169 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( ( C  gcd  N )  x.  ( k  x.  s
) )  =  ( ( ( C  gcd  N )  x.  ( A  x.  r ) )  -  ( ( C  gcd  N )  x.  ( B  x.  r
) ) )  <->  ( ( C  gcd  N )  x.  ( k  x.  s
) )  =  ( ( C  gcd  N
)  x.  ( ( A  x.  r )  -  ( B  x.  r ) ) ) ) )
7832adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
k  e.  ZZ )
79 simprr 522 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
s  e.  ZZ )
8078, 79zmulcld 9286 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( k  x.  s
)  e.  ZZ )
8180zcnd 9281 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( k  x.  s
)  e.  CC )
82 zmulcl 9214 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  r  e.  ZZ )  ->  ( A  x.  r
)  e.  ZZ )
8382ad2ant2r 501 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( A  x.  r
)  e.  ZZ )
84 zmulcl 9214 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ZZ  /\  r  e.  ZZ )  ->  ( B  x.  r
)  e.  ZZ )
8584ad2ant2lr 502 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( B  x.  r
)  e.  ZZ )
8683, 85zsubcld 9285 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( A  x.  r )  -  ( B  x.  r )
)  e.  ZZ )
8786zcnd 9281 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( A  x.  r )  -  ( B  x.  r )
)  e.  CC )
8887ex 114 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( r  e.  ZZ  /\  s  e.  ZZ )  ->  (
( A  x.  r
)  -  ( B  x.  r ) )  e.  CC ) )
89883adant3 1002 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( r  e.  ZZ  /\  s  e.  ZZ )  ->  ( ( A  x.  r )  -  ( B  x.  r
) )  e.  CC ) )
9089ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  ( ( r  e.  ZZ  /\  s  e.  ZZ )  ->  (
( A  x.  r
)  -  ( B  x.  r ) )  e.  CC ) )
9190imp 123 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( A  x.  r )  -  ( B  x.  r )
)  e.  CC )
9210ad2antrl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  N  =/=  0
)
93 gcd2n0cl 11844 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( C  gcd  N )  e.  NN )
9436, 50, 92, 93syl3anc 1220 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  gcd  N )  e.  NN )
9594nnne0d 8872 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  gcd  N )  =/=  0 )
9695ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( C  gcd  N
)  =/=  0 )
9752adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( C  gcd  N
)  e.  NN0 )
9897nn0zd 9278 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( C  gcd  N
)  e.  ZZ )
99 0zd 9173 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
0  e.  ZZ )
100 zapne 9232 . . . . . . . . . . . . 13  |-  ( ( ( C  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( C  gcd  N ) #  0  <->  ( C  gcd  N )  =/=  0
) )
10198, 99, 100syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( C  gcd  N ) #  0  <->  ( C  gcd  N )  =/=  0
) )
10296, 101mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( C  gcd  N
) #  0 )
10381, 91, 64, 102mulcanapd 8529 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( ( C  gcd  N )  x.  ( k  x.  s
) )  =  ( ( C  gcd  N
)  x.  ( ( A  x.  r )  -  ( B  x.  r ) ) )  <-> 
( k  x.  s
)  =  ( ( A  x.  r )  -  ( B  x.  r ) ) ) )
10467, 77, 1033bitrd 213 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( k  x.  ( ( C  gcd  N )  x.  s ) )  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  ( ( C  gcd  N )  x.  r ) ) )  <->  ( k  x.  s )  =  ( ( A  x.  r
)  -  ( B  x.  r ) ) ) )
105104adantr 274 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( k  x.  (
( C  gcd  N
)  x.  s ) )  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  ( ( C  gcd  N )  x.  r ) ) )  <->  ( k  x.  s )  =  ( ( A  x.  r
)  -  ( B  x.  r ) ) ) )
106 zcn 9166 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ZZ  ->  A  e.  CC )
107 zcn 9166 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  ZZ  ->  B  e.  CC )
108106, 107anim12i 336 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  e.  CC  /\  B  e.  CC ) )
1091083adant3 1002 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  e.  CC  /\  B  e.  CC ) )
110109ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  ( A  e.  CC  /\  B  e.  CC ) )
111110, 56anim12i 336 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( A  e.  CC  /\  B  e.  CC )  /\  r  e.  CC ) )
112 df-3an 965 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  r  e.  CC )  <->  ( ( A  e.  CC  /\  B  e.  CC )  /\  r  e.  CC ) )
113111, 112sylibr 133 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( A  e.  CC  /\  B  e.  CC  /\  r  e.  CC )
)
114 subdir 8255 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  r  e.  CC )  ->  (
( A  -  B
)  x.  r )  =  ( ( A  x.  r )  -  ( B  x.  r
) ) )
115113, 114syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( A  -  B )  x.  r
)  =  ( ( A  x.  r )  -  ( B  x.  r ) ) )
116115eqcomd 2163 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( A  x.  r )  -  ( B  x.  r )
)  =  ( ( A  -  B )  x.  r ) )
117116adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( A  x.  r
)  -  ( B  x.  r ) )  =  ( ( A  -  B )  x.  r ) )
118117eqeq2d 2169 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( k  x.  s
)  =  ( ( A  x.  r )  -  ( B  x.  r ) )  <->  ( k  x.  s )  =  ( ( A  -  B
)  x.  r ) ) )
1195nncnd 8841 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  ->  N  e.  CC )
120119adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  N  e.  CC )
121120ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  ->  N  e.  CC )
12279zcnd 9281 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
s  e.  CC )
123121, 122, 40, 102divmulap2d 8691 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( N  / 
( C  gcd  N
) )  =  s  <-> 
N  =  ( ( C  gcd  N )  x.  s ) ) )
124 simpll 519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ ) )
12569adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
r  e.  ZZ )
1265adantl 275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  N  e.  NN )
127 divgcdnnr 11851 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  C  e.  ZZ )  ->  ( N  /  ( C  gcd  N ) )  e.  NN )
128126, 36, 127syl2anc 409 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( N  / 
( C  gcd  N
) )  e.  NN )
129128ad3antrrr 484 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( N  /  ( C  gcd  N ) )  e.  NN )
130 eleq1 2220 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( N  / 
( C  gcd  N
) )  ->  (
s  e.  NN  <->  ( N  /  ( C  gcd  N ) )  e.  NN ) )
131130eqcoms 2160 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  /  ( C  gcd  N ) )  =  s  ->  (
s  e.  NN  <->  ( N  /  ( C  gcd  N ) )  e.  NN ) )
132131adantl 275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( s  e.  NN  <->  ( N  /  ( C  gcd  N ) )  e.  NN ) )
133129, 132mpbird 166 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
s  e.  NN )
134125, 133jca 304 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( r  e.  ZZ  /\  s  e.  NN ) )
135124, 134jca 304 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )
136 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( N  /  ( C  gcd  N ) )  =  s )
137 nnz 9180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( s  e.  NN  ->  s  e.  ZZ )
138137adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( r  e.  ZZ  /\  s  e.  NN )  ->  s  e.  ZZ )
139138anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  ->  ( k  e.  ZZ  /\  s  e.  ZZ ) )
140139adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( k  e.  ZZ  /\  s  e.  ZZ ) )
141 dvdsmul2 11702 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( k  e.  ZZ  /\  s  e.  ZZ )  ->  s  ||  ( k  x.  s ) )
142140, 141syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  s  ||  (
k  x.  s ) )
143 breq2 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r )  ->  (
s  ||  ( k  x.  s )  <->  s  ||  ( ( A  -  B )  x.  r
) ) )
144 zsubcl 9202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
145144zcnd 9281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  CC )
146145adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( A  -  B )  e.  CC )
147 zcn 9166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( r  e.  ZZ  ->  r  e.  CC )
148147ad2antrl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  ->  r  e.  CC )
149148adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  r  e.  CC )
150146, 149mulcomd 7893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( A  -  B )  x.  r )  =  ( r  x.  ( A  -  B ) ) )
151150breq2d 3977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( s  ||  ( ( A  -  B )  x.  r
)  <->  s  ||  (
r  x.  ( A  -  B ) ) ) )
152137anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( r  e.  ZZ  /\  s  e.  NN )  ->  ( r  e.  ZZ  /\  s  e.  ZZ ) )
153 gcdcom 11848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( r  e.  ZZ  /\  s  e.  ZZ )  ->  ( r  gcd  s
)  =  ( s  gcd  r ) )
154152, 153syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( r  e.  ZZ  /\  s  e.  NN )  ->  ( r  gcd  s
)  =  ( s  gcd  r ) )
155154eqeq1d 2166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( r  e.  ZZ  /\  s  e.  NN )  ->  ( ( r  gcd  s )  =  1  <-> 
( s  gcd  r
)  =  1 ) )
156155ad2antll 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( r  gcd  s )  =  1  <->  ( s  gcd  r )  =  1 ) )
157152adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  ->  ( r  e.  ZZ  /\  s  e.  ZZ ) )
158157ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  ->  ( s  e.  ZZ  /\  r  e.  ZZ ) )
159144, 158anim12i 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( A  -  B )  e.  ZZ  /\  ( s  e.  ZZ  /\  r  e.  ZZ ) ) )
160159ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( s  e.  ZZ  /\  r  e.  ZZ )  /\  ( A  -  B )  e.  ZZ ) )
161 df-3an 965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( s  e.  ZZ  /\  r  e.  ZZ  /\  ( A  -  B )  e.  ZZ )  <->  ( (
s  e.  ZZ  /\  r  e.  ZZ )  /\  ( A  -  B
)  e.  ZZ ) )
162160, 161sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( s  e.  ZZ  /\  r  e.  ZZ  /\  ( A  -  B )  e.  ZZ ) )
163 coprmdvds 11960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( s  e.  ZZ  /\  r  e.  ZZ  /\  ( A  -  B )  e.  ZZ )  ->  (
( s  ||  (
r  x.  ( A  -  B ) )  /\  ( s  gcd  r )  =  1 )  ->  s  ||  ( A  -  B
) ) )
164162, 163syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( s 
||  ( r  x.  ( A  -  B
) )  /\  (
s  gcd  r )  =  1 )  -> 
s  ||  ( A  -  B ) ) )
165 simprr 522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  ->  s  e.  NN )
166165anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  s  e.  NN ) )
167166ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( s  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) ) )
168 3anass 967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( s  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  <->  ( s  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) ) )
169167, 168sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( s  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ ) )
170 moddvds 11688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( s  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  s
)  =  ( B  mod  s )  <->  s  ||  ( A  -  B
) ) )
171169, 170syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( A  mod  s )  =  ( B  mod  s
)  <->  s  ||  ( A  -  B )
) )
172164, 171sylibrd 168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( s 
||  ( r  x.  ( A  -  B
) )  /\  (
s  gcd  r )  =  1 )  -> 
( A  mod  s
)  =  ( B  mod  s ) ) )
173172expcomd 1421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( s  gcd  r )  =  1  ->  ( s  ||  ( r  x.  ( A  -  B )
)  ->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
174156, 173sylbid 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( r  gcd  s )  =  1  ->  ( s  ||  ( r  x.  ( A  -  B )
)  ->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
175174com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( s  ||  ( r  x.  ( A  -  B )
)  ->  ( (
r  gcd  s )  =  1  ->  ( A  mod  s )  =  ( B  mod  s
) ) ) )
176151, 175sylbid 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( s  ||  ( ( A  -  B )  x.  r
)  ->  ( (
r  gcd  s )  =  1  ->  ( A  mod  s )  =  ( B  mod  s
) ) ) )
177176com3l 81 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( s 
||  ( ( A  -  B )  x.  r )  ->  (
( r  gcd  s
)  =  1  -> 
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  (
k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( A  mod  s )  =  ( B  mod  s
) ) ) )
178143, 177syl6bi 162 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r )  ->  (
s  ||  ( k  x.  s )  ->  (
( r  gcd  s
)  =  1  -> 
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  (
k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( A  mod  s )  =  ( B  mod  s
) ) ) ) )
179178com14 88 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( s  ||  ( k  x.  s
)  ->  ( (
r  gcd  s )  =  1  ->  (
( k  x.  s
)  =  ( ( A  -  B )  x.  r )  -> 
( A  mod  s
)  =  ( B  mod  s ) ) ) ) )
180142, 179mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) ) )  ->  ( ( r  gcd  s )  =  1  ->  ( (
k  x.  s )  =  ( ( A  -  B )  x.  r )  ->  ( A  mod  s )  =  ( B  mod  s
) ) ) )
181180ex 114 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  -> 
( ( r  gcd  s )  =  1  ->  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r
)  ->  ( A  mod  s )  =  ( B  mod  s ) ) ) ) )
1821813adant3 1002 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  ->  ( (
r  gcd  s )  =  1  ->  (
( k  x.  s
)  =  ( ( A  -  B )  x.  r )  -> 
( A  mod  s
)  =  ( B  mod  s ) ) ) ) )
183182adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( k  e.  ZZ  /\  (
r  e.  ZZ  /\  s  e.  NN )
)  ->  ( (
r  gcd  s )  =  1  ->  (
( k  x.  s
)  =  ( ( A  -  B )  x.  r )  -> 
( A  mod  s
)  =  ( B  mod  s ) ) ) ) )
184183impl 378 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  -> 
( ( r  gcd  s )  =  1  ->  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r
)  ->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
185184adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( ( r  gcd  s )  =  1  ->  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r
)  ->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
186185imp 123 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  /\  ( r  gcd  s
)  =  1 )  ->  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r
)  ->  ( A  mod  s )  =  ( B  mod  s ) ) )
187 eqtr2 2176 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( N  /  ( C  gcd  N ) )  =  M  /\  ( N  /  ( C  gcd  N ) )  =  s )  ->  M  =  s )
188 oveq2 5829 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( M  =  s  ->  ( A  mod  M )  =  ( A  mod  s
) )
189 oveq2 5829 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( M  =  s  ->  ( B  mod  M )  =  ( B  mod  s
) )
190188, 189eqeq12d 2172 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  =  s  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  ( A  mod  s )  =  ( B  mod  s ) ) )
191187, 190syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( N  /  ( C  gcd  N ) )  =  M  /\  ( N  /  ( C  gcd  N ) )  =  s )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( A  mod  s )  =  ( B  mod  s ) ) )
192191ex 114 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  /  ( C  gcd  N ) )  =  M  ->  (
( N  /  ( C  gcd  N ) )  =  s  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
193192eqcoms 2160 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  =  ( N  / 
( C  gcd  N
) )  ->  (
( N  /  ( C  gcd  N ) )  =  s  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
194193ad2antll 483 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( N  /  ( C  gcd  N ) )  =  s  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
195194ad2antrr 480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  -> 
( ( N  / 
( C  gcd  N
) )  =  s  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( A  mod  s )  =  ( B  mod  s ) ) ) )
196195imp 123 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( ( A  mod  M )  =  ( B  mod  M )  <->  ( A  mod  s )  =  ( B  mod  s ) ) )
197196adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  /\  ( r  gcd  s
)  =  1 )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( A  mod  s )  =  ( B  mod  s ) ) )
198186, 197sylibrd 168 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  /\  ( r  gcd  s
)  =  1 )  ->  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r
)  ->  ( A  mod  M )  =  ( B  mod  M ) ) )
199198ex 114 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  NN ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( ( r  gcd  s )  =  1  ->  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r
)  ->  ( A  mod  M )  =  ( B  mod  M ) ) ) )
200135, 136, 199syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( N  /  ( C  gcd  N ) )  =  s )  -> 
( ( r  gcd  s )  =  1  ->  ( ( k  x.  s )  =  ( ( A  -  B )  x.  r
)  ->  ( A  mod  M )  =  ( B  mod  M ) ) ) )
201200ex 114 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( N  / 
( C  gcd  N
) )  =  s  ->  ( ( r  gcd  s )  =  1  ->  ( (
k  x.  s )  =  ( ( A  -  B )  x.  r )  ->  ( A  mod  M )  =  ( B  mod  M
) ) ) ) )
202123, 201sylbird 169 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( N  =  ( ( C  gcd  N
)  x.  s )  ->  ( ( r  gcd  s )  =  1  ->  ( (
k  x.  s )  =  ( ( A  -  B )  x.  r )  ->  ( A  mod  M )  =  ( B  mod  M
) ) ) ) )
203202com3l 81 . . . . . . . . . . . 12  |-  ( N  =  ( ( C  gcd  N )  x.  s )  ->  (
( r  gcd  s
)  =  1  -> 
( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( k  x.  s )  =  ( ( A  -  B
)  x.  r )  ->  ( A  mod  M )  =  ( B  mod  M ) ) ) ) )
204203a1i 9 . . . . . . . . . . 11  |-  ( C  =  ( ( C  gcd  N )  x.  r )  ->  ( N  =  ( ( C  gcd  N )  x.  s )  ->  (
( r  gcd  s
)  =  1  -> 
( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( k  x.  s )  =  ( ( A  -  B
)  x.  r )  ->  ( A  mod  M )  =  ( B  mod  M ) ) ) ) ) )
2052043imp 1176 . . . . . . . . . 10  |-  ( ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N )  x.  s )  /\  (
r  gcd  s )  =  1 )  -> 
( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( k  x.  s )  =  ( ( A  -  B
)  x.  r )  ->  ( A  mod  M )  =  ( B  mod  M ) ) ) )
206205impcom 124 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( k  x.  s
)  =  ( ( A  -  B )  x.  r )  -> 
( A  mod  M
)  =  ( B  mod  M ) ) )
207118, 206sylbid 149 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( k  x.  s
)  =  ( ( A  x.  r )  -  ( B  x.  r ) )  -> 
( A  mod  M
)  =  ( B  mod  M ) ) )
208105, 207sylbid 149 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( k  x.  (
( C  gcd  N
)  x.  s ) )  =  ( ( A  x.  ( ( C  gcd  N )  x.  r ) )  -  ( B  x.  ( ( C  gcd  N )  x.  r ) ) )  ->  ( A  mod  M )  =  ( B  mod  M
) ) )
20931, 208sylbid 149 . . . . . 6  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  /\  ( C  =  (
( C  gcd  N
)  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 ) )  ->  (
( k  x.  N
)  =  ( ( A  x.  C )  -  ( B  x.  C ) )  -> 
( A  mod  M
)  =  ( B  mod  M ) ) )
210209ex 114 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  /\  ( r  e.  ZZ  /\  s  e.  ZZ ) )  -> 
( ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 )  ->  ( (
k  x.  N )  =  ( ( A  x.  C )  -  ( B  x.  C
) )  ->  ( A  mod  M )  =  ( B  mod  M
) ) ) )
211210rexlimdvva 2582 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  ( E. r  e.  ZZ  E. s  e.  ZZ  ( C  =  ( ( C  gcd  N )  x.  r )  /\  N  =  ( ( C  gcd  N
)  x.  s )  /\  ( r  gcd  s )  =  1 )  ->  ( (
k  x.  N )  =  ( ( A  x.  C )  -  ( B  x.  C
) )  ->  ( A  mod  M )  =  ( B  mod  M
) ) ) )
21222, 211mpd 13 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  k  e.  ZZ )  ->  ( ( k  x.  N )  =  ( ( A  x.  C )  -  ( B  x.  C )
)  ->  ( A  mod  M )  =  ( B  mod  M ) ) )
213212rexlimdva 2574 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( E. k  e.  ZZ  ( k  x.  N )  =  ( ( A  x.  C
)  -  ( B  x.  C ) )  ->  ( A  mod  M )  =  ( B  mod  M ) ) )
2147, 213sylbid 149 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  ->  ( A  mod  M )  =  ( B  mod  M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128    =/= wne 2327   E.wrex 2436   class class class wbr 3965  (class class class)co 5821   CCcc 7724   0cc0 7726   1c1 7727    x. cmul 7731    - cmin 8040   # cap 8450    / cdiv 8539   NNcn 8827   NN0cn0 9084   ZZcz 9161    mod cmo 10214    || cdvds 11676    gcd cgcd 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-dvds 11677  df-gcd 11822
This theorem is referenced by:  cncongr  11973
  Copyright terms: Public domain W3C validator