| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iss | Unicode version | ||
| Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| iss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 |
. . . . . . 7
| |
| 2 | vex 2766 |
. . . . . . . . 9
| |
| 3 | vex 2766 |
. . . . . . . . 9
| |
| 4 | 2, 3 | opeldm 4869 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | 1, 5 | jcad 307 |
. . . . . 6
|
| 7 | df-br 4034 |
. . . . . . . . 9
| |
| 8 | 3 | ideq 4818 |
. . . . . . . . 9
|
| 9 | 7, 8 | bitr3i 186 |
. . . . . . . 8
|
| 10 | 2 | eldm2 4864 |
. . . . . . . . . 10
|
| 11 | opeq2 3809 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | eleq1d 2265 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | biimprcd 160 |
. . . . . . . . . . . . 13
|
| 14 | 9, 13 | biimtrid 152 |
. . . . . . . . . . . 12
|
| 15 | 1, 14 | sylcom 28 |
. . . . . . . . . . 11
|
| 16 | 15 | exlimdv 1833 |
. . . . . . . . . 10
|
| 17 | 10, 16 | biimtrid 152 |
. . . . . . . . 9
|
| 18 | 12 | imbi2d 230 |
. . . . . . . . 9
|
| 19 | 17, 18 | syl5ibcom 155 |
. . . . . . . 8
|
| 20 | 9, 19 | biimtrid 152 |
. . . . . . 7
|
| 21 | 20 | impd 254 |
. . . . . 6
|
| 22 | 6, 21 | impbid 129 |
. . . . 5
|
| 23 | 3 | opelres 4951 |
. . . . 5
|
| 24 | 22, 23 | bitr4di 198 |
. . . 4
|
| 25 | 24 | alrimivv 1889 |
. . 3
|
| 26 | reli 4795 |
. . . . 5
| |
| 27 | relss 4750 |
. . . . 5
| |
| 28 | 26, 27 | mpi 15 |
. . . 4
|
| 29 | relres 4974 |
. . . 4
| |
| 30 | eqrel 4752 |
. . . 4
| |
| 31 | 28, 29, 30 | sylancl 413 |
. . 3
|
| 32 | 25, 31 | mpbird 167 |
. 2
|
| 33 | resss 4970 |
. . 3
| |
| 34 | sseq1 3206 |
. . 3
| |
| 35 | 33, 34 | mpbiri 168 |
. 2
|
| 36 | 32, 35 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-dm 4673 df-res 4675 |
| This theorem is referenced by: funcocnv2 5529 |
| Copyright terms: Public domain | W3C validator |