ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iss Unicode version

Theorem iss 5005
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )

Proof of Theorem iss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  _I  ) )
2 vex 2775 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2775 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 4881 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
54a1i 9 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A ) )
61, 5jcad 307 . . . . . 6  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  /\  x  e. 
dom  A ) ) )
7 df-br 4045 . . . . . . . . 9  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
83ideq 4830 . . . . . . . . 9  |-  ( x  _I  y  <->  x  =  y )
97, 8bitr3i 186 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
102eldm2 4876 . . . . . . . . . 10  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
11 opeq2 3820 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  <. x ,  x >.  =  <. x ,  y >. )
1211eleq1d 2274 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  A  <->  <. x ,  y
>.  e.  A ) )
1312biimprcd 160 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  A  ->  ( x  =  y  ->  <. x ,  x >.  e.  A
) )
149, 13biimtrid 152 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  ->  <. x ,  x >.  e.  A
) )
151, 14sylcom 28 . . . . . . . . . . 11  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  x >.  e.  A
) )
1615exlimdv 1842 . . . . . . . . . 10  |-  ( A 
C_  _I  ->  ( E. y <. x ,  y
>.  e.  A  ->  <. x ,  x >.  e.  A
) )
1710, 16biimtrid 152 . . . . . . . . 9  |-  ( A 
C_  _I  ->  ( x  e.  dom  A  ->  <. x ,  x >.  e.  A ) )
1812imbi2d 230 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  dom  A  ->  <. x ,  x >.  e.  A )  <->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
1917, 18syl5ibcom 155 . . . . . . . 8  |-  ( A 
C_  _I  ->  ( x  =  y  ->  (
x  e.  dom  A  -> 
<. x ,  y >.  e.  A ) ) )
209, 19biimtrid 152 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  _I  ->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
2120impd 254 . . . . . 6  |-  ( A 
C_  _I  ->  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
dom  A )  ->  <. x ,  y >.  e.  A ) )
226, 21impbid 129 . . . . 5  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) ) )
233opelres 4964 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  dom  A
)  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) )
2422, 23bitr4di 198 . . . 4  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (  _I  |`  dom  A
) ) )
2524alrimivv 1898 . . 3  |-  ( A 
C_  _I  ->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) )
26 reli 4807 . . . . 5  |-  Rel  _I
27 relss 4762 . . . . 5  |-  ( A 
C_  _I  ->  ( Rel 
_I  ->  Rel  A )
)
2826, 27mpi 15 . . . 4  |-  ( A 
C_  _I  ->  Rel  A
)
29 relres 4987 . . . 4  |-  Rel  (  _I  |`  dom  A )
30 eqrel 4764 . . . 4  |-  ( ( Rel  A  /\  Rel  (  _I  |`  dom  A
) )  ->  ( A  =  (  _I  |` 
dom  A )  <->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) ) )
3128, 29, 30sylancl 413 . . 3  |-  ( A 
C_  _I  ->  ( A  =  (  _I  |`  dom  A
)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (  _I  |`  dom  A ) ) ) )
3225, 31mpbird 167 . 2  |-  ( A 
C_  _I  ->  A  =  (  _I  |`  dom  A
) )
33 resss 4983 . . 3  |-  (  _I  |`  dom  A )  C_  _I
34 sseq1 3216 . . 3  |-  ( A  =  (  _I  |`  dom  A
)  ->  ( A  C_  _I  <->  (  _I  |`  dom  A
)  C_  _I  )
)
3533, 34mpbiri 168 . 2  |-  ( A  =  (  _I  |`  dom  A
)  ->  A  C_  _I  )
3632, 35impbii 126 1  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176    C_ wss 3166   <.cop 3636   class class class wbr 4044    _I cid 4335   dom cdm 4675    |` cres 4677   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-dm 4685  df-res 4687
This theorem is referenced by:  funcocnv2  5547
  Copyright terms: Public domain W3C validator