Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iss | Unicode version |
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
iss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . . . . 7 | |
2 | vex 2729 | . . . . . . . . 9 | |
3 | vex 2729 | . . . . . . . . 9 | |
4 | 2, 3 | opeldm 4807 | . . . . . . . 8 |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | 1, 5 | jcad 305 | . . . . . 6 |
7 | df-br 3983 | . . . . . . . . 9 | |
8 | 3 | ideq 4756 | . . . . . . . . 9 |
9 | 7, 8 | bitr3i 185 | . . . . . . . 8 |
10 | 2 | eldm2 4802 | . . . . . . . . . 10 |
11 | opeq2 3759 | . . . . . . . . . . . . . . 15 | |
12 | 11 | eleq1d 2235 | . . . . . . . . . . . . . 14 |
13 | 12 | biimprcd 159 | . . . . . . . . . . . . 13 |
14 | 9, 13 | syl5bi 151 | . . . . . . . . . . . 12 |
15 | 1, 14 | sylcom 28 | . . . . . . . . . . 11 |
16 | 15 | exlimdv 1807 | . . . . . . . . . 10 |
17 | 10, 16 | syl5bi 151 | . . . . . . . . 9 |
18 | 12 | imbi2d 229 | . . . . . . . . 9 |
19 | 17, 18 | syl5ibcom 154 | . . . . . . . 8 |
20 | 9, 19 | syl5bi 151 | . . . . . . 7 |
21 | 20 | impd 252 | . . . . . 6 |
22 | 6, 21 | impbid 128 | . . . . 5 |
23 | 3 | opelres 4889 | . . . . 5 |
24 | 22, 23 | bitr4di 197 | . . . 4 |
25 | 24 | alrimivv 1863 | . . 3 |
26 | reli 4733 | . . . . 5 | |
27 | relss 4691 | . . . . 5 | |
28 | 26, 27 | mpi 15 | . . . 4 |
29 | relres 4912 | . . . 4 | |
30 | eqrel 4693 | . . . 4 | |
31 | 28, 29, 30 | sylancl 410 | . . 3 |
32 | 25, 31 | mpbird 166 | . 2 |
33 | resss 4908 | . . 3 | |
34 | sseq1 3165 | . . 3 | |
35 | 33, 34 | mpbiri 167 | . 2 |
36 | 32, 35 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 wss 3116 cop 3579 class class class wbr 3982 cid 4266 cdm 4604 cres 4606 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-dm 4614 df-res 4616 |
This theorem is referenced by: funcocnv2 5457 |
Copyright terms: Public domain | W3C validator |