Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iss | Unicode version |
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
iss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . . . 7 | |
2 | vex 2733 | . . . . . . . . 9 | |
3 | vex 2733 | . . . . . . . . 9 | |
4 | 2, 3 | opeldm 4814 | . . . . . . . 8 |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | 1, 5 | jcad 305 | . . . . . 6 |
7 | df-br 3990 | . . . . . . . . 9 | |
8 | 3 | ideq 4763 | . . . . . . . . 9 |
9 | 7, 8 | bitr3i 185 | . . . . . . . 8 |
10 | 2 | eldm2 4809 | . . . . . . . . . 10 |
11 | opeq2 3766 | . . . . . . . . . . . . . . 15 | |
12 | 11 | eleq1d 2239 | . . . . . . . . . . . . . 14 |
13 | 12 | biimprcd 159 | . . . . . . . . . . . . 13 |
14 | 9, 13 | syl5bi 151 | . . . . . . . . . . . 12 |
15 | 1, 14 | sylcom 28 | . . . . . . . . . . 11 |
16 | 15 | exlimdv 1812 | . . . . . . . . . 10 |
17 | 10, 16 | syl5bi 151 | . . . . . . . . 9 |
18 | 12 | imbi2d 229 | . . . . . . . . 9 |
19 | 17, 18 | syl5ibcom 154 | . . . . . . . 8 |
20 | 9, 19 | syl5bi 151 | . . . . . . 7 |
21 | 20 | impd 252 | . . . . . 6 |
22 | 6, 21 | impbid 128 | . . . . 5 |
23 | 3 | opelres 4896 | . . . . 5 |
24 | 22, 23 | bitr4di 197 | . . . 4 |
25 | 24 | alrimivv 1868 | . . 3 |
26 | reli 4740 | . . . . 5 | |
27 | relss 4698 | . . . . 5 | |
28 | 26, 27 | mpi 15 | . . . 4 |
29 | relres 4919 | . . . 4 | |
30 | eqrel 4700 | . . . 4 | |
31 | 28, 29, 30 | sylancl 411 | . . 3 |
32 | 25, 31 | mpbird 166 | . 2 |
33 | resss 4915 | . . 3 | |
34 | sseq1 3170 | . . 3 | |
35 | 33, 34 | mpbiri 167 | . 2 |
36 | 32, 35 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 wss 3121 cop 3586 class class class wbr 3989 cid 4273 cdm 4611 cres 4613 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-dm 4621 df-res 4623 |
This theorem is referenced by: funcocnv2 5467 |
Copyright terms: Public domain | W3C validator |