ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iss Unicode version

Theorem iss 4937
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )

Proof of Theorem iss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3141 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  _I  ) )
2 vex 2733 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2733 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 4814 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
54a1i 9 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A ) )
61, 5jcad 305 . . . . . 6  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  /\  x  e. 
dom  A ) ) )
7 df-br 3990 . . . . . . . . 9  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
83ideq 4763 . . . . . . . . 9  |-  ( x  _I  y  <->  x  =  y )
97, 8bitr3i 185 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
102eldm2 4809 . . . . . . . . . 10  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
11 opeq2 3766 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  <. x ,  x >.  =  <. x ,  y >. )
1211eleq1d 2239 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  A  <->  <. x ,  y
>.  e.  A ) )
1312biimprcd 159 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  A  ->  ( x  =  y  ->  <. x ,  x >.  e.  A
) )
149, 13syl5bi 151 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  ->  <. x ,  x >.  e.  A
) )
151, 14sylcom 28 . . . . . . . . . . 11  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  x >.  e.  A
) )
1615exlimdv 1812 . . . . . . . . . 10  |-  ( A 
C_  _I  ->  ( E. y <. x ,  y
>.  e.  A  ->  <. x ,  x >.  e.  A
) )
1710, 16syl5bi 151 . . . . . . . . 9  |-  ( A 
C_  _I  ->  ( x  e.  dom  A  ->  <. x ,  x >.  e.  A ) )
1812imbi2d 229 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  dom  A  ->  <. x ,  x >.  e.  A )  <->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
1917, 18syl5ibcom 154 . . . . . . . 8  |-  ( A 
C_  _I  ->  ( x  =  y  ->  (
x  e.  dom  A  -> 
<. x ,  y >.  e.  A ) ) )
209, 19syl5bi 151 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  _I  ->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
2120impd 252 . . . . . 6  |-  ( A 
C_  _I  ->  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
dom  A )  ->  <. x ,  y >.  e.  A ) )
226, 21impbid 128 . . . . 5  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) ) )
233opelres 4896 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  dom  A
)  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) )
2422, 23bitr4di 197 . . . 4  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (  _I  |`  dom  A
) ) )
2524alrimivv 1868 . . 3  |-  ( A 
C_  _I  ->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) )
26 reli 4740 . . . . 5  |-  Rel  _I
27 relss 4698 . . . . 5  |-  ( A 
C_  _I  ->  ( Rel 
_I  ->  Rel  A )
)
2826, 27mpi 15 . . . 4  |-  ( A 
C_  _I  ->  Rel  A
)
29 relres 4919 . . . 4  |-  Rel  (  _I  |`  dom  A )
30 eqrel 4700 . . . 4  |-  ( ( Rel  A  /\  Rel  (  _I  |`  dom  A
) )  ->  ( A  =  (  _I  |` 
dom  A )  <->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) ) )
3128, 29, 30sylancl 411 . . 3  |-  ( A 
C_  _I  ->  ( A  =  (  _I  |`  dom  A
)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (  _I  |`  dom  A ) ) ) )
3225, 31mpbird 166 . 2  |-  ( A 
C_  _I  ->  A  =  (  _I  |`  dom  A
) )
33 resss 4915 . . 3  |-  (  _I  |`  dom  A )  C_  _I
34 sseq1 3170 . . 3  |-  ( A  =  (  _I  |`  dom  A
)  ->  ( A  C_  _I  <->  (  _I  |`  dom  A
)  C_  _I  )
)
3533, 34mpbiri 167 . 2  |-  ( A  =  (  _I  |`  dom  A
)  ->  A  C_  _I  )
3632, 35impbii 125 1  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   <.cop 3586   class class class wbr 3989    _I cid 4273   dom cdm 4611    |` cres 4613   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-dm 4621  df-res 4623
This theorem is referenced by:  funcocnv2  5467
  Copyright terms: Public domain W3C validator