| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcosseq | Unicode version | ||
| Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcosseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4993 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | ssel 3218 |
. . . . . . . 8
| |
| 4 | vex 2802 |
. . . . . . . . . . 11
| |
| 5 | 4 | elrn 4966 |
. . . . . . . . . 10
|
| 6 | 4 | eldm 4919 |
. . . . . . . . . 10
|
| 7 | 5, 6 | imbi12i 239 |
. . . . . . . . 9
|
| 8 | 19.8a 1636 |
. . . . . . . . . . 11
| |
| 9 | 8 | imim1i 60 |
. . . . . . . . . 10
|
| 10 | pm3.2 139 |
. . . . . . . . . . 11
| |
| 11 | 10 | eximdv 1926 |
. . . . . . . . . 10
|
| 12 | 9, 11 | sylcom 28 |
. . . . . . . . 9
|
| 13 | 7, 12 | sylbi 121 |
. . . . . . . 8
|
| 14 | 3, 13 | syl 14 |
. . . . . . 7
|
| 15 | 14 | eximdv 1926 |
. . . . . 6
|
| 16 | excom 1710 |
. . . . . 6
| |
| 17 | 15, 16 | imbitrrdi 162 |
. . . . 5
|
| 18 | vex 2802 |
. . . . . . 7
| |
| 19 | vex 2802 |
. . . . . . 7
| |
| 20 | 18, 19 | opelco 4893 |
. . . . . 6
|
| 21 | 20 | exbii 1651 |
. . . . 5
|
| 22 | 17, 21 | imbitrrdi 162 |
. . . 4
|
| 23 | 18 | eldm 4919 |
. . . 4
|
| 24 | 18 | eldm2 4920 |
. . . 4
|
| 25 | 22, 23, 24 | 3imtr4g 205 |
. . 3
|
| 26 | 25 | ssrdv 3230 |
. 2
|
| 27 | 2, 26 | eqssd 3241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: dmcoeq 4996 fnco 5430 |
| Copyright terms: Public domain | W3C validator |