Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmcosseq | Unicode version |
Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmcosseq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 4873 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | ssel 3136 | . . . . . . . 8 | |
4 | vex 2729 | . . . . . . . . . . 11 | |
5 | 4 | elrn 4847 | . . . . . . . . . 10 |
6 | 4 | eldm 4801 | . . . . . . . . . 10 |
7 | 5, 6 | imbi12i 238 | . . . . . . . . 9 |
8 | 19.8a 1578 | . . . . . . . . . . 11 | |
9 | 8 | imim1i 60 | . . . . . . . . . 10 |
10 | pm3.2 138 | . . . . . . . . . . 11 | |
11 | 10 | eximdv 1868 | . . . . . . . . . 10 |
12 | 9, 11 | sylcom 28 | . . . . . . . . 9 |
13 | 7, 12 | sylbi 120 | . . . . . . . 8 |
14 | 3, 13 | syl 14 | . . . . . . 7 |
15 | 14 | eximdv 1868 | . . . . . 6 |
16 | excom 1652 | . . . . . 6 | |
17 | 15, 16 | syl6ibr 161 | . . . . 5 |
18 | vex 2729 | . . . . . . 7 | |
19 | vex 2729 | . . . . . . 7 | |
20 | 18, 19 | opelco 4776 | . . . . . 6 |
21 | 20 | exbii 1593 | . . . . 5 |
22 | 17, 21 | syl6ibr 161 | . . . 4 |
23 | 18 | eldm 4801 | . . . 4 |
24 | 18 | eldm2 4802 | . . . 4 |
25 | 22, 23, 24 | 3imtr4g 204 | . . 3 |
26 | 25 | ssrdv 3148 | . 2 |
27 | 2, 26 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 wss 3116 cop 3579 class class class wbr 3982 cdm 4604 crn 4605 ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 |
This theorem is referenced by: dmcoeq 4876 fnco 5296 |
Copyright terms: Public domain | W3C validator |