ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcosseq Unicode version

Theorem dmcosseq 4882
Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcosseq  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  =  dom  B
)

Proof of Theorem dmcosseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 4880 . . 3  |-  dom  ( A  o.  B )  C_ 
dom  B
21a1i 9 . 2  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  C_  dom  B )
3 ssel 3141 . . . . . . . 8  |-  ( ran 
B  C_  dom  A  -> 
( y  e.  ran  B  ->  y  e.  dom  A ) )
4 vex 2733 . . . . . . . . . . 11  |-  y  e. 
_V
54elrn 4854 . . . . . . . . . 10  |-  ( y  e.  ran  B  <->  E. x  x B y )
64eldm 4808 . . . . . . . . . 10  |-  ( y  e.  dom  A  <->  E. z 
y A z )
75, 6imbi12i 238 . . . . . . . . 9  |-  ( ( y  e.  ran  B  ->  y  e.  dom  A
)  <->  ( E. x  x B y  ->  E. z 
y A z ) )
8 19.8a 1583 . . . . . . . . . . 11  |-  ( x B y  ->  E. x  x B y )
98imim1i 60 . . . . . . . . . 10  |-  ( ( E. x  x B y  ->  E. z 
y A z )  ->  ( x B y  ->  E. z 
y A z ) )
10 pm3.2 138 . . . . . . . . . . 11  |-  ( x B y  ->  (
y A z  -> 
( x B y  /\  y A z ) ) )
1110eximdv 1873 . . . . . . . . . 10  |-  ( x B y  ->  ( E. z  y A
z  ->  E. z
( x B y  /\  y A z ) ) )
129, 11sylcom 28 . . . . . . . . 9  |-  ( ( E. x  x B y  ->  E. z 
y A z )  ->  ( x B y  ->  E. z
( x B y  /\  y A z ) ) )
137, 12sylbi 120 . . . . . . . 8  |-  ( ( y  e.  ran  B  ->  y  e.  dom  A
)  ->  ( x B y  ->  E. z
( x B y  /\  y A z ) ) )
143, 13syl 14 . . . . . . 7  |-  ( ran 
B  C_  dom  A  -> 
( x B y  ->  E. z ( x B y  /\  y A z ) ) )
1514eximdv 1873 . . . . . 6  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. y E. z ( x B y  /\  y A z ) ) )
16 excom 1657 . . . . . 6  |-  ( E. z E. y ( x B y  /\  y A z )  <->  E. y E. z ( x B y  /\  y A z ) )
1715, 16syl6ibr 161 . . . . 5  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. z E. y ( x B y  /\  y A z ) ) )
18 vex 2733 . . . . . . 7  |-  x  e. 
_V
19 vex 2733 . . . . . . 7  |-  z  e. 
_V
2018, 19opelco 4783 . . . . . 6  |-  ( <.
x ,  z >.  e.  ( A  o.  B
)  <->  E. y ( x B y  /\  y A z ) )
2120exbii 1598 . . . . 5  |-  ( E. z <. x ,  z
>.  e.  ( A  o.  B )  <->  E. z E. y ( x B y  /\  y A z ) )
2217, 21syl6ibr 161 . . . 4  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. z <. x ,  z >.  e.  ( A  o.  B
) ) )
2318eldm 4808 . . . 4  |-  ( x  e.  dom  B  <->  E. y  x B y )
2418eldm2 4809 . . . 4  |-  ( x  e.  dom  ( A  o.  B )  <->  E. z <. x ,  z >.  e.  ( A  o.  B
) )
2522, 23, 243imtr4g 204 . . 3  |-  ( ran 
B  C_  dom  A  -> 
( x  e.  dom  B  ->  x  e.  dom  ( A  o.  B
) ) )
2625ssrdv 3153 . 2  |-  ( ran 
B  C_  dom  A  ->  dom  B  C_  dom  ( A  o.  B ) )
272, 26eqssd 3164 1  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  =  dom  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   <.cop 3586   class class class wbr 3989   dom cdm 4611   ran crn 4612    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622
This theorem is referenced by:  dmcoeq  4883  fnco  5306
  Copyright terms: Public domain W3C validator