| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcosseq | Unicode version | ||
| Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcosseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 4947 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | ssel 3186 |
. . . . . . . 8
| |
| 4 | vex 2774 |
. . . . . . . . . . 11
| |
| 5 | 4 | elrn 4920 |
. . . . . . . . . 10
|
| 6 | 4 | eldm 4874 |
. . . . . . . . . 10
|
| 7 | 5, 6 | imbi12i 239 |
. . . . . . . . 9
|
| 8 | 19.8a 1612 |
. . . . . . . . . . 11
| |
| 9 | 8 | imim1i 60 |
. . . . . . . . . 10
|
| 10 | pm3.2 139 |
. . . . . . . . . . 11
| |
| 11 | 10 | eximdv 1902 |
. . . . . . . . . 10
|
| 12 | 9, 11 | sylcom 28 |
. . . . . . . . 9
|
| 13 | 7, 12 | sylbi 121 |
. . . . . . . 8
|
| 14 | 3, 13 | syl 14 |
. . . . . . 7
|
| 15 | 14 | eximdv 1902 |
. . . . . 6
|
| 16 | excom 1686 |
. . . . . 6
| |
| 17 | 15, 16 | imbitrrdi 162 |
. . . . 5
|
| 18 | vex 2774 |
. . . . . . 7
| |
| 19 | vex 2774 |
. . . . . . 7
| |
| 20 | 18, 19 | opelco 4849 |
. . . . . 6
|
| 21 | 20 | exbii 1627 |
. . . . 5
|
| 22 | 17, 21 | imbitrrdi 162 |
. . . 4
|
| 23 | 18 | eldm 4874 |
. . . 4
|
| 24 | 18 | eldm2 4875 |
. . . 4
|
| 25 | 22, 23, 24 | 3imtr4g 205 |
. . 3
|
| 26 | 25 | ssrdv 3198 |
. 2
|
| 27 | 2, 26 | eqssd 3209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 |
| This theorem is referenced by: dmcoeq 4950 fnco 5383 |
| Copyright terms: Public domain | W3C validator |