ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrest Unicode version

Theorem metrest 13673
Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
Hypotheses
Ref Expression
metrest.1  |-  D  =  ( C  |`  ( Y  X.  Y ) )
metrest.3  |-  J  =  ( MetOpen `  C )
metrest.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metrest  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  K )

Proof of Theorem metrest
Dummy variables  u  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3355 . . . . . . . . . 10  |-  ( u  i^i  Y )  C_  u
2 metrest.3 . . . . . . . . . . . . 13  |-  J  =  ( MetOpen `  C )
32elmopn2 13616 . . . . . . . . . . . 12  |-  ( C  e.  ( *Met `  X )  ->  (
u  e.  J  <->  ( u  C_  X  /\  A. y  e.  u  E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u
) ) )
43simplbda 384 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  J
)  ->  A. y  e.  u  E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u
)
54adantlr 477 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  A. y  e.  u  E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u
)
6 ssralv 3219 . . . . . . . . . 10  |-  ( ( u  i^i  Y ) 
C_  u  ->  ( A. y  e.  u  E. r  e.  RR+  (
y ( ball `  C
) r )  C_  u  ->  A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( y ( ball `  C ) r ) 
C_  u ) )
71, 5, 6mpsyl 65 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  A. y  e.  ( u  i^i  Y
) E. r  e.  RR+  ( y ( ball `  C ) r ) 
C_  u )
8 ssrin 3360 . . . . . . . . . . 11  |-  ( ( y ( ball `  C
) r )  C_  u  ->  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  (
u  i^i  Y )
)
98reximi 2574 . . . . . . . . . 10  |-  ( E. r  e.  RR+  (
y ( ball `  C
) r )  C_  u  ->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) )
109ralimi 2540 . . . . . . . . 9  |-  ( A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( y (
ball `  C )
r )  C_  u  ->  A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) )
117, 10syl 14 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  A. y  e.  ( u  i^i  Y
) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) )
12 inss2 3356 . . . . . . . 8  |-  ( u  i^i  Y )  C_  Y
1311, 12jctil 312 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  (
( u  i^i  Y
)  C_  Y  /\  A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  ( u  i^i  Y ) ) )
14 sseq1 3178 . . . . . . . 8  |-  ( x  =  ( u  i^i 
Y )  ->  (
x  C_  Y  <->  ( u  i^i  Y )  C_  Y
) )
15 sseq2 3179 . . . . . . . . . 10  |-  ( x  =  ( u  i^i 
Y )  ->  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  <->  ( (
y ( ball `  C
) r )  i^i 
Y )  C_  (
u  i^i  Y )
) )
1615rexbidv 2478 . . . . . . . . 9  |-  ( x  =  ( u  i^i 
Y )  ->  ( E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) ) )
1716raleqbi1dv 2680 . . . . . . . 8  |-  ( x  =  ( u  i^i 
Y )  ->  ( A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x 
<-> 
A. y  e.  ( u  i^i  Y ) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) ) )
1814, 17anbi12d 473 . . . . . . 7  |-  ( x  =  ( u  i^i 
Y )  ->  (
( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x )  <->  ( (
u  i^i  Y )  C_  Y  /\  A. y  e.  ( u  i^i  Y
) E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  ( u  i^i  Y ) ) ) )
1913, 18syl5ibrcom 157 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  u  e.  J )  ->  (
x  =  ( u  i^i  Y )  -> 
( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x ) ) )
2019rexlimdva 2594 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
Y )  ->  (
x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) ) )
212mopntop 13611 . . . . . . . . 9  |-  ( C  e.  ( *Met `  X )  ->  J  e.  Top )
2221ad2antrr 488 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  J  e.  Top )
23 ssel2 3150 . . . . . . . . . . . . . 14  |-  ( ( x  C_  Y  /\  y  e.  x )  ->  y  e.  Y )
24 ssel2 3150 . . . . . . . . . . . . . . . 16  |-  ( ( Y  C_  X  /\  y  e.  Y )  ->  y  e.  X )
25 rpxr 9648 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  RR+  ->  r  e. 
RR* )
262blopn 13657 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( y ( ball `  C ) r )  e.  J )
27 eleq1a 2249 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y ( ball `  C
) r )  e.  J  ->  ( z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
2826, 27syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( z  =  ( y ( ball `  C
) r )  -> 
z  e.  J ) )
29283expa 1203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  X )  /\  r  e.  RR* )  ->  (
z  =  ( y ( ball `  C
) r )  -> 
z  e.  J ) )
3025, 29sylan2 286 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  X )  /\  r  e.  RR+ )  ->  (
z  =  ( y ( ball `  C
) r )  -> 
z  e.  J ) )
3130rexlimdva 2594 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X
)  ->  ( E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  ->  z  e.  J
) )
3224, 31sylan2 286 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ( *Met `  X )  /\  ( Y  C_  X  /\  y  e.  Y
) )  ->  ( E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
3332anassrs 400 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  y  e.  Y )  ->  ( E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
3423, 33sylan2 286 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  y  e.  x ) )  -> 
( E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  -> 
z  e.  J ) )
3534anassrs 400 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  Y  C_  X )  /\  x  C_  Y )  /\  y  e.  x )  ->  ( E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  ->  z  e.  J ) )
3635rexlimdva 2594 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  ->  z  e.  J
) )
3736adantrd 279 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x )  ->  z  e.  J ) )
3837adantrr 479 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x )  ->  z  e.  J ) )
3938abssdv 3229 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  C_  J )
40 uniopn 13166 . . . . . . . 8  |-  ( ( J  e.  Top  /\  { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  C_  J
)  ->  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  e.  J )
4122, 39, 40syl2anc 411 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  e.  J
)
42 oveq1 5876 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  u  ->  (
y ( ball `  C
) r )  =  ( u ( ball `  C ) r ) )
4342ineq1d 3335 . . . . . . . . . . . . . . . . 17  |-  ( y  =  u  ->  (
( y ( ball `  C ) r )  i^i  Y )  =  ( ( u (
ball `  C )
r )  i^i  Y
) )
4443sseq1d 3184 . . . . . . . . . . . . . . . 16  |-  ( y  =  u  ->  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  <->  ( (
u ( ball `  C
) r )  i^i 
Y )  C_  x
) )
4544rexbidv 2478 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  ( E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x 
<->  E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x )
)
4645rspccv 2838 . . . . . . . . . . . . . 14  |-  ( A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  ->  ( u  e.  x  ->  E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x )
)
4746ad2antll 491 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  E. r  e.  RR+  (
( u ( ball `  C ) r )  i^i  Y )  C_  x ) )
48 ssel 3149 . . . . . . . . . . . . . . 15  |-  ( x 
C_  Y  ->  (
u  e.  x  ->  u  e.  Y )
)
49 ssel 3149 . . . . . . . . . . . . . . . 16  |-  ( Y 
C_  X  ->  (
u  e.  Y  ->  u  e.  X )
)
50 blcntr 13583 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X  /\  r  e.  RR+ )  ->  u  e.  ( u ( ball `  C
) r ) )
5150a1d 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X  /\  r  e.  RR+ )  ->  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  ->  u  e.  ( u ( ball `  C
) r ) ) )
5251ancld 325 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X  /\  r  e.  RR+ )  ->  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  ->  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
53523expa 1203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( C  e.  ( *Met `  X
)  /\  u  e.  X )  /\  r  e.  RR+ )  ->  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  ->  ( ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) )
5453reximdva 2579 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  ( *Met `  X )  /\  u  e.  X
)  ->  ( E. r  e.  RR+  ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  ->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
5554ex 115 . . . . . . . . . . . . . . . 16  |-  ( C  e.  ( *Met `  X )  ->  (
u  e.  X  -> 
( E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  ->  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) ) )
5649, 55sylan9r 410 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( u  e.  Y  ->  ( E. r  e.  RR+  (
( u ( ball `  C ) r )  i^i  Y )  C_  x  ->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) ) )
5748, 56sylan9r 410 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( u  e.  x  ->  ( E. r  e.  RR+  (
( u ( ball `  C ) r )  i^i  Y )  C_  x  ->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) ) )
5857adantrr 479 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  -> 
( E. r  e.  RR+  ( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  ->  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) ) )
5947, 58mpdd 41 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) ) )
6042eleq2d 2247 . . . . . . . . . . . . . . . 16  |-  ( y  =  u  ->  (
u  e.  ( y ( ball `  C
) r )  <->  u  e.  ( u ( ball `  C ) r ) ) )
6144, 60anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  (
( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) )  <-> 
( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
6261rexbidv 2478 . . . . . . . . . . . . . 14  |-  ( y  =  u  ->  ( E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  <->  E. r  e.  RR+  ( ( ( u ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
u ( ball `  C
) r ) ) ) )
6362rspcev 2841 . . . . . . . . . . . . 13  |-  ( ( u  e.  x  /\  E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) ) )  ->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) )
6463ex 115 . . . . . . . . . . . 12  |-  ( u  e.  x  ->  ( E. r  e.  RR+  (
( ( u (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( u
( ball `  C )
r ) )  ->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) ) )
6559, 64sylcom 28 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) ) )
66 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  x  C_  Y )
6766sseld 3154 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  ->  u  e.  Y )
)
6865, 67jcad 307 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  -> 
( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) )  /\  u  e.  Y
) ) )
69 elin 3318 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( ( y ( ball `  C
) r )  i^i 
Y )  <->  ( u  e.  ( y ( ball `  C ) r )  /\  u  e.  Y
) )
70 ssel2 3150 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( (
y ( ball `  C
) r )  i^i 
Y ) )  ->  u  e.  x )
7169, 70sylan2br 288 . . . . . . . . . . . . . 14  |-  ( ( ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  ( u  e.  (
y ( ball `  C
) r )  /\  u  e.  Y )
)  ->  u  e.  x )
7271expr 375 . . . . . . . . . . . . 13  |-  ( ( ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  -> 
( u  e.  Y  ->  u  e.  x ) )
7372rexlimivw 2590 . . . . . . . . . . . 12  |-  ( E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  -> 
( u  e.  Y  ->  u  e.  x ) )
7473rexlimivw 2590 . . . . . . . . . . 11  |-  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  ->  ( u  e.  Y  ->  u  e.  x ) )
7574imp 124 . . . . . . . . . 10  |-  ( ( E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  /\  u  e.  Y )  ->  u  e.  x )
7668, 75impbid1 142 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  <->  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  /\  u  e.  Y
) ) )
77 elin 3318 . . . . . . . . . . 11  |-  ( u  e.  ( U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  i^i  Y
)  <->  ( u  e. 
U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  /\  u  e.  Y
) )
78 eluniab 3819 . . . . . . . . . . . . . 14  |-  ( u  e.  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) } 
<->  E. z ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) ) )
79 ancom 266 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) )  <->  ( ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x )  /\  u  e.  z ) )
80 anass 401 . . . . . . . . . . . . . . . 16  |-  ( ( ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x )  /\  u  e.  z
)  <->  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
81 r19.41v 2633 . . . . . . . . . . . . . . . . . 18  |-  ( E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  ( E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( ( z  i^i  Y )  C_  x  /\  u  e.  z ) ) )
8281rexbii 2484 . . . . . . . . . . . . . . . . 17  |-  ( E. y  e.  x  E. r  e.  RR+  ( z  =  ( y (
ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
)  <->  E. y  e.  x  ( E. r  e.  RR+  z  =  ( y
( ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
) )
83 r19.41v 2633 . . . . . . . . . . . . . . . . 17  |-  ( E. y  e.  x  ( E. r  e.  RR+  z  =  ( y
( ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
)  <->  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
8482, 83bitr2i 185 . . . . . . . . . . . . . . . 16  |-  ( ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
( z  i^i  Y
)  C_  x  /\  u  e.  z )
)  <->  E. y  e.  x  E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
8579, 80, 843bitri 206 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) )  <->  E. y  e.  x  E. r  e.  RR+  ( z  =  ( y ( ball `  C ) r )  /\  ( ( z  i^i  Y )  C_  x  /\  u  e.  z ) ) )
8685exbii 1605 . . . . . . . . . . . . . 14  |-  ( E. z ( u  e.  z  /\  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) )  <->  E. z E. y  e.  x  E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
8778, 86bitri 184 . . . . . . . . . . . . 13  |-  ( u  e.  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) } 
<->  E. z E. y  e.  x  E. r  e.  RR+  ( z  =  ( y ( ball `  C ) r )  /\  ( ( z  i^i  Y )  C_  x  /\  u  e.  z ) ) )
88 vex 2740 . . . . . . . . . . . . . . . . . . 19  |-  y  e. 
_V
89 blex 13554 . . . . . . . . . . . . . . . . . . 19  |-  ( C  e.  ( *Met `  X )  ->  ( ball `  C )  e. 
_V )
90 vex 2740 . . . . . . . . . . . . . . . . . . . 20  |-  r  e. 
_V
9190a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  r  e.  _V )
92 ovexg 5903 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  _V  /\  ( ball `  C )  e.  _V  /\  r  e. 
_V )  ->  (
y ( ball `  C
) r )  e. 
_V )
9388, 89, 91, 92mp3an2ani 1344 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( y
( ball `  C )
r )  e.  _V )
94 ineq1 3329 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
z  i^i  Y )  =  ( ( y ( ball `  C
) r )  i^i 
Y ) )
9594sseq1d 3184 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
( z  i^i  Y
)  C_  x  <->  ( (
y ( ball `  C
) r )  i^i 
Y )  C_  x
) )
96 eleq2 2241 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
u  e.  z  <->  u  e.  ( y ( ball `  C ) r ) ) )
9795, 96anbi12d 473 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( y (
ball `  C )
r )  ->  (
( ( z  i^i 
Y )  C_  x  /\  u  e.  z
)  <->  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) ) ) )
9897ceqsexgv 2866 . . . . . . . . . . . . . . . . . 18  |-  ( ( y ( ball `  C
) r )  e. 
_V  ->  ( E. z
( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  ( (
( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) ) ) )
9993, 98syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. z ( z  =  ( y ( ball `  C ) r )  /\  ( ( z  i^i  Y )  C_  x  /\  u  e.  z ) )  <->  ( (
( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) ) ) )
10099rexbidv 2478 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. r  e.  RR+  E. z
( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. r  e.  RR+  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) ) ) )
101 rexcom4 2760 . . . . . . . . . . . . . . . 16  |-  ( E. r  e.  RR+  E. z
( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. z E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
102100, 101bitr3di 195 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  <->  E. z E. r  e.  RR+  ( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) ) )
103102rexbidv 2478 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  <->  E. y  e.  x  E. z E. r  e.  RR+  ( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) ) )
104 rexcom4 2760 . . . . . . . . . . . . . 14  |-  ( E. y  e.  x  E. z E. r  e.  RR+  ( z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. z E. y  e.  x  E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) ) )
105103, 104bitr2di 197 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. z E. y  e.  x  E. r  e.  RR+  (
z  =  ( y ( ball `  C
) r )  /\  ( ( z  i^i 
Y )  C_  x  /\  u  e.  z
) )  <->  E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) ) ) )
10687, 105bitrid 192 . . . . . . . . . . . 12  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( u  e.  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) } 
<->  E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) ) ) )
107106anbi1d 465 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( (
u  e.  U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  /\  u  e.  Y )  <->  ( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C ) r )  i^i  Y )  C_  x  /\  u  e.  ( y ( ball `  C
) r ) )  /\  u  e.  Y
) ) )
10877, 107bitr2id 193 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( ( E. y  e.  x  E. r  e.  RR+  (
( ( y (
ball `  C )
r )  i^i  Y
)  C_  x  /\  u  e.  ( y
( ball `  C )
r ) )  /\  u  e.  Y )  <->  u  e.  ( U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  i^i  Y
) ) )
109108adantr 276 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
( E. y  e.  x  E. r  e.  RR+  ( ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x  /\  u  e.  (
y ( ball `  C
) r ) )  /\  u  e.  Y
)  <->  u  e.  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) }  i^i  Y ) ) )
11076, 109bitrd 188 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  (
u  e.  x  <->  u  e.  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  i^i  Y ) ) )
111110eqrdv 2175 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  x  =  ( U. {
z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C ) r )  /\  ( z  i^i 
Y )  C_  x
) }  i^i  Y
) )
112 ineq1 3329 . . . . . . . 8  |-  ( u  =  U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  ->  ( u  i^i 
Y )  =  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  i^i  Y ) )
113112rspceeqv 2859 . . . . . . 7  |-  ( ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  (
y ( ball `  C
) r )  /\  ( z  i^i  Y
)  C_  x ) }  e.  J  /\  x  =  ( U. { z  |  ( E. y  e.  x  E. r  e.  RR+  z  =  ( y (
ball `  C )
r )  /\  (
z  i^i  Y )  C_  x ) }  i^i  Y ) )  ->  E. u  e.  J  x  =  ( u  i^i  Y ) )
11441, 111, 113syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )  ->  E. u  e.  J  x  =  ( u  i^i  Y ) )
115114ex 115 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( (
x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
)  ->  E. u  e.  J  x  =  ( u  i^i  Y ) ) )
11620, 115impbid 129 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
Y )  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) ) )
117 simpr 110 . . . . . . . . . . 11  |-  ( ( Y  C_  X  /\  y  e.  Y )  ->  y  e.  Y )
11824, 117elind 3320 . . . . . . . . . 10  |-  ( ( Y  C_  X  /\  y  e.  Y )  ->  y  e.  ( X  i^i  Y ) )
119 metrest.1 . . . . . . . . . . . . . . 15  |-  D  =  ( C  |`  ( Y  X.  Y ) )
120119blres 13601 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ( X  i^i  Y )  /\  r  e.  RR* )  ->  ( y (
ball `  D )
r )  =  ( ( y ( ball `  C ) r )  i^i  Y ) )
121120sseq1d 3184 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ( X  i^i  Y )  /\  r  e.  RR* )  ->  ( ( y ( ball `  D
) r )  C_  x 
<->  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
1221213expa 1203 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  ( X  i^i  Y ) )  /\  r  e. 
RR* )  ->  (
( y ( ball `  D ) r ) 
C_  x  <->  ( (
y ( ball `  C
) r )  i^i 
Y )  C_  x
) )
12325, 122sylan2 286 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( *Met `  X
)  /\  y  e.  ( X  i^i  Y ) )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  D
) r )  C_  x 
<->  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
124123rexbidva 2474 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  ( X  i^i  Y ) )  ->  ( E. r  e.  RR+  ( y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
125118, 124sylan2 286 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  ( Y  C_  X  /\  y  e.  Y
) )  ->  ( E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
126125anassrs 400 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  y  e.  Y )  ->  ( E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
12723, 126sylan2 286 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  ( x  C_  Y  /\  y  e.  x ) )  -> 
( E. r  e.  RR+  ( y ( ball `  D ) r ) 
C_  x  <->  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) )
128127anassrs 400 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  Y  C_  X )  /\  x  C_  Y )  /\  y  e.  x )  ->  ( E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x 
<->  E. r  e.  RR+  ( ( y (
ball `  C )
r )  i^i  Y
)  C_  x )
)
129128ralbidva 2473 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  Y  C_  X
)  /\  x  C_  Y
)  ->  ( A. y  e.  x  E. r  e.  RR+  ( y ( ball `  D
) r )  C_  x 
<-> 
A. y  e.  x  E. r  e.  RR+  (
( y ( ball `  C ) r )  i^i  Y )  C_  x ) )
130129pm5.32da 452 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( (
x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y ( ball `  D
) r )  C_  x )  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( ( y ( ball `  C
) r )  i^i 
Y )  C_  x
) ) )
131116, 130bitr4d 191 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
Y )  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) ) )
13221adantr 276 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  J  e.  Top )
133 id 19 . . . . 5  |-  ( Y 
C_  X  ->  Y  C_  X )
1342mopnm 13615 . . . . 5  |-  ( C  e.  ( *Met `  X )  ->  X  e.  J )
135 ssexg 4139 . . . . 5  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
136133, 134, 135syl2anr 290 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  Y  e.  _V )
137 elrest 12643 . . . 4  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( x  e.  ( Jt  Y )  <->  E. u  e.  J  x  =  ( u  i^i  Y ) ) )
138132, 136, 137syl2anc 411 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( x  e.  ( Jt  Y )  <->  E. u  e.  J  x  =  ( u  i^i  Y ) ) )
139 xmetres2 13546 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( C  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
140119, 139eqeltrid 2264 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  D  e.  ( *Met `  Y
) )
141 metrest.4 . . . . 5  |-  K  =  ( MetOpen `  D )
142141elmopn2 13616 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  (
x  e.  K  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) ) )
143140, 142syl 14 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( x  e.  K  <->  ( x  C_  Y  /\  A. y  e.  x  E. r  e.  RR+  ( y ( ball `  D ) r ) 
C_  x ) ) )
144131, 138, 1433bitr4d 220 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( x  e.  ( Jt  Y )  <->  x  e.  K ) )
145144eqrdv 2175 1  |-  ( ( C  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2737    i^i cin 3128    C_ wss 3129   U.cuni 3807    X. cxp 4621    |` cres 4625   ` cfv 5212  (class class class)co 5869   RR*cxr 7981   RR+crp 9640   ↾t crest 12636   *Metcxmet 13147   ballcbl 13149   MetOpencmopn 13152   Topctop 13162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208
This theorem is referenced by:  resubmet  13715  tgioo2cntop  13716  divcnap  13722  cncfcncntop  13747  limcimolemlt  13800  cnplimcim  13803  cnplimclemr  13805  limccnpcntop  13811  limccnp2cntop  13813
  Copyright terms: Public domain W3C validator