Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snon0 | Unicode version |
Description: An ordinal which is a singleton is . (Contributed by Jim Kingdon, 19-Oct-2021.) |
Ref | Expression |
---|---|
snon0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4518 | . . 3 | |
2 | snidg 3605 | . . . . . . 7 | |
3 | 2 | adantr 274 | . . . . . 6 |
4 | ontr1 4367 | . . . . . . 7 | |
5 | 4 | adantl 275 | . . . . . 6 |
6 | 3, 5 | mpan2d 425 | . . . . 5 |
7 | elsni 3594 | . . . . 5 | |
8 | 6, 7 | syl6 33 | . . . 4 |
9 | eleq1 2229 | . . . . 5 | |
10 | 9 | biimpcd 158 | . . . 4 |
11 | 8, 10 | sylcom 28 | . . 3 |
12 | 1, 11 | mtoi 654 | . 2 |
13 | 12 | eq0rdv 3453 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 c0 3409 csn 3576 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |