ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snon0 Unicode version

Theorem snon0 7063
Description: An ordinal which is a singleton is  { (/) }. (Contributed by Jim Kingdon, 19-Oct-2021.)
Assertion
Ref Expression
snon0  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )

Proof of Theorem snon0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 4607 . . 3  |-  -.  A  e.  A
2 snidg 3672 . . . . . . 7  |-  ( A  e.  V  ->  A  e.  { A } )
32adantr 276 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  e.  { A } )
4 ontr1 4454 . . . . . . 7  |-  ( { A }  e.  On  ->  ( ( x  e.  A  /\  A  e. 
{ A } )  ->  x  e.  { A } ) )
54adantl 277 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( ( x  e.  A  /\  A  e.  { A } )  ->  x  e.  { A } ) )
63, 5mpan2d 428 . . . . 5  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  e.  { A } ) )
7 elsni 3661 . . . . 5  |-  ( x  e.  { A }  ->  x  =  A )
86, 7syl6 33 . . . 4  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  =  A ) )
9 eleq1 2270 . . . . 5  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
109biimpcd 159 . . . 4  |-  ( x  e.  A  ->  (
x  =  A  ->  A  e.  A )
)
118, 10sylcom 28 . . 3  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  A  e.  A ) )
121, 11mtoi 666 . 2  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  -.  x  e.  A )
1312eq0rdv 3513 1  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   (/)c0 3468   {csn 3643   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator