| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snon0 | Unicode version | ||
| Description: An ordinal which is a
singleton is |
| Ref | Expression |
|---|---|
| snon0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4633 |
. . 3
| |
| 2 | snidg 3695 |
. . . . . . 7
| |
| 3 | 2 | adantr 276 |
. . . . . 6
|
| 4 | ontr1 4480 |
. . . . . . 7
| |
| 5 | 4 | adantl 277 |
. . . . . 6
|
| 6 | 3, 5 | mpan2d 428 |
. . . . 5
|
| 7 | elsni 3684 |
. . . . 5
| |
| 8 | 6, 7 | syl6 33 |
. . . 4
|
| 9 | eleq1 2292 |
. . . . 5
| |
| 10 | 9 | biimpcd 159 |
. . . 4
|
| 11 | 8, 10 | sylcom 28 |
. . 3
|
| 12 | 1, 11 | mtoi 668 |
. 2
|
| 13 | 12 | eq0rdv 3536 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |