ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snon0 Unicode version

Theorem snon0 6909
Description: An ordinal which is a singleton is  { (/) }. (Contributed by Jim Kingdon, 19-Oct-2021.)
Assertion
Ref Expression
snon0  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )

Proof of Theorem snon0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 4523 . . 3  |-  -.  A  e.  A
2 snidg 3610 . . . . . . 7  |-  ( A  e.  V  ->  A  e.  { A } )
32adantr 274 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  e.  { A } )
4 ontr1 4372 . . . . . . 7  |-  ( { A }  e.  On  ->  ( ( x  e.  A  /\  A  e. 
{ A } )  ->  x  e.  { A } ) )
54adantl 275 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( ( x  e.  A  /\  A  e.  { A } )  ->  x  e.  { A } ) )
63, 5mpan2d 426 . . . . 5  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  e.  { A } ) )
7 elsni 3599 . . . . 5  |-  ( x  e.  { A }  ->  x  =  A )
86, 7syl6 33 . . . 4  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  =  A ) )
9 eleq1 2233 . . . . 5  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
109biimpcd 158 . . . 4  |-  ( x  e.  A  ->  (
x  =  A  ->  A  e.  A )
)
118, 10sylcom 28 . . 3  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  A  e.  A ) )
121, 11mtoi 659 . 2  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  -.  x  e.  A )
1312eq0rdv 3458 1  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   (/)c0 3414   {csn 3581   Oncon0 4346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3587  df-uni 3795  df-tr 4086  df-iord 4349  df-on 4351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator