| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funopg | Unicode version | ||
| Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| funopg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeq1 3808 | 
. . . . 5
 | |
| 2 | 1 | funeqd 5280 | 
. . . 4
 | 
| 3 | eqeq1 2203 | 
. . . 4
 | |
| 4 | 2, 3 | imbi12d 234 | 
. . 3
 | 
| 5 | opeq2 3809 | 
. . . . 5
 | |
| 6 | 5 | funeqd 5280 | 
. . . 4
 | 
| 7 | eqeq2 2206 | 
. . . 4
 | |
| 8 | 6, 7 | imbi12d 234 | 
. . 3
 | 
| 9 | funrel 5275 | 
. . . . 5
 | |
| 10 | vex 2766 | 
. . . . . 6
 | |
| 11 | vex 2766 | 
. . . . . 6
 | |
| 12 | 10, 11 | relop 4816 | 
. . . . 5
 | 
| 13 | 9, 12 | sylib 122 | 
. . . 4
 | 
| 14 | 10, 11 | opth 4270 | 
. . . . . . . 8
 | 
| 15 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 16 | 15 | opid 3826 | 
. . . . . . . . . . 11
 | 
| 17 | 16 | preq1i 3702 | 
. . . . . . . . . 10
 | 
| 18 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 19 | 15, 18 | dfop 3807 | 
. . . . . . . . . . 11
 | 
| 20 | 19 | preq2i 3703 | 
. . . . . . . . . 10
 | 
| 21 | 15 | snex 4218 | 
. . . . . . . . . . 11
 | 
| 22 | zfpair2 4243 | 
. . . . . . . . . . 11
 | |
| 23 | 21, 22 | dfop 3807 | 
. . . . . . . . . 10
 | 
| 24 | 17, 20, 23 | 3eqtr4ri 2228 | 
. . . . . . . . 9
 | 
| 25 | 24 | eqeq2i 2207 | 
. . . . . . . 8
 | 
| 26 | 14, 25 | bitr3i 186 | 
. . . . . . 7
 | 
| 27 | dffun4 5269 | 
. . . . . . . . 9
 | |
| 28 | 27 | simprbi 275 | 
. . . . . . . 8
 | 
| 29 | 15, 15 | opex 4262 | 
. . . . . . . . . . 11
 | 
| 30 | 29 | prid1 3728 | 
. . . . . . . . . 10
 | 
| 31 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 32 | 30, 31 | mpbiri 168 | 
. . . . . . . . 9
 | 
| 33 | 15, 18 | opex 4262 | 
. . . . . . . . . . 11
 | 
| 34 | 33 | prid2 3729 | 
. . . . . . . . . 10
 | 
| 35 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 36 | 34, 35 | mpbiri 168 | 
. . . . . . . . 9
 | 
| 37 | 32, 36 | jca 306 | 
. . . . . . . 8
 | 
| 38 | opeq12 3810 | 
. . . . . . . . . . . . . 14
 | |
| 39 | 38 | 3adant3 1019 | 
. . . . . . . . . . . . 13
 | 
| 40 | 39 | eleq1d 2265 | 
. . . . . . . . . . . 12
 | 
| 41 | opeq12 3810 | 
. . . . . . . . . . . . . 14
 | |
| 42 | 41 | 3adant2 1018 | 
. . . . . . . . . . . . 13
 | 
| 43 | 42 | eleq1d 2265 | 
. . . . . . . . . . . 12
 | 
| 44 | 40, 43 | anbi12d 473 | 
. . . . . . . . . . 11
 | 
| 45 | eqeq12 2209 | 
. . . . . . . . . . . 12
 | |
| 46 | 45 | 3adant1 1017 | 
. . . . . . . . . . 11
 | 
| 47 | 44, 46 | imbi12d 234 | 
. . . . . . . . . 10
 | 
| 48 | 47 | spc3gv 2857 | 
. . . . . . . . 9
 | 
| 49 | 15, 15, 18, 48 | mp3an 1348 | 
. . . . . . . 8
 | 
| 50 | 28, 37, 49 | syl2im 38 | 
. . . . . . 7
 | 
| 51 | 26, 50 | biimtrid 152 | 
. . . . . 6
 | 
| 52 | dfsn2 3636 | 
. . . . . . . . . . 11
 | |
| 53 | preq2 3700 | 
. . . . . . . . . . 11
 | |
| 54 | 52, 53 | eqtr2id 2242 | 
. . . . . . . . . 10
 | 
| 55 | 54 | eqeq2d 2208 | 
. . . . . . . . 9
 | 
| 56 | eqtr3 2216 | 
. . . . . . . . . 10
 | |
| 57 | 56 | expcom 116 | 
. . . . . . . . 9
 | 
| 58 | 55, 57 | biimtrdi 163 | 
. . . . . . . 8
 | 
| 59 | 58 | com13 80 | 
. . . . . . 7
 | 
| 60 | 59 | imp 124 | 
. . . . . 6
 | 
| 61 | 51, 60 | sylcom 28 | 
. . . . 5
 | 
| 62 | 61 | exlimdvv 1912 | 
. . . 4
 | 
| 63 | 13, 62 | mpd 13 | 
. . 3
 | 
| 64 | 4, 8, 63 | vtocl2g 2828 | 
. 2
 | 
| 65 | 64 | 3impia 1202 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-fun 5260 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |