| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funopg | Unicode version | ||
| Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| funopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3833 |
. . . . 5
| |
| 2 | 1 | funeqd 5312 |
. . . 4
|
| 3 | eqeq1 2214 |
. . . 4
| |
| 4 | 2, 3 | imbi12d 234 |
. . 3
|
| 5 | opeq2 3834 |
. . . . 5
| |
| 6 | 5 | funeqd 5312 |
. . . 4
|
| 7 | eqeq2 2217 |
. . . 4
| |
| 8 | 6, 7 | imbi12d 234 |
. . 3
|
| 9 | funrel 5307 |
. . . . 5
| |
| 10 | vex 2779 |
. . . . . 6
| |
| 11 | vex 2779 |
. . . . . 6
| |
| 12 | 10, 11 | relop 4846 |
. . . . 5
|
| 13 | 9, 12 | sylib 122 |
. . . 4
|
| 14 | 10, 11 | opth 4299 |
. . . . . . . 8
|
| 15 | vex 2779 |
. . . . . . . . . . . 12
| |
| 16 | 15 | opid 3851 |
. . . . . . . . . . 11
|
| 17 | 16 | preq1i 3723 |
. . . . . . . . . 10
|
| 18 | vex 2779 |
. . . . . . . . . . . 12
| |
| 19 | 15, 18 | dfop 3832 |
. . . . . . . . . . 11
|
| 20 | 19 | preq2i 3724 |
. . . . . . . . . 10
|
| 21 | 15 | snex 4245 |
. . . . . . . . . . 11
|
| 22 | zfpair2 4270 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | dfop 3832 |
. . . . . . . . . 10
|
| 24 | 17, 20, 23 | 3eqtr4ri 2239 |
. . . . . . . . 9
|
| 25 | 24 | eqeq2i 2218 |
. . . . . . . 8
|
| 26 | 14, 25 | bitr3i 186 |
. . . . . . 7
|
| 27 | dffun4 5301 |
. . . . . . . . 9
| |
| 28 | 27 | simprbi 275 |
. . . . . . . 8
|
| 29 | 15, 15 | opex 4291 |
. . . . . . . . . . 11
|
| 30 | 29 | prid1 3749 |
. . . . . . . . . 10
|
| 31 | eleq2 2271 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | mpbiri 168 |
. . . . . . . . 9
|
| 33 | 15, 18 | opex 4291 |
. . . . . . . . . . 11
|
| 34 | 33 | prid2 3750 |
. . . . . . . . . 10
|
| 35 | eleq2 2271 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | mpbiri 168 |
. . . . . . . . 9
|
| 37 | 32, 36 | jca 306 |
. . . . . . . 8
|
| 38 | opeq12 3835 |
. . . . . . . . . . . . . 14
| |
| 39 | 38 | 3adant3 1020 |
. . . . . . . . . . . . 13
|
| 40 | 39 | eleq1d 2276 |
. . . . . . . . . . . 12
|
| 41 | opeq12 3835 |
. . . . . . . . . . . . . 14
| |
| 42 | 41 | 3adant2 1019 |
. . . . . . . . . . . . 13
|
| 43 | 42 | eleq1d 2276 |
. . . . . . . . . . . 12
|
| 44 | 40, 43 | anbi12d 473 |
. . . . . . . . . . 11
|
| 45 | eqeq12 2220 |
. . . . . . . . . . . 12
| |
| 46 | 45 | 3adant1 1018 |
. . . . . . . . . . 11
|
| 47 | 44, 46 | imbi12d 234 |
. . . . . . . . . 10
|
| 48 | 47 | spc3gv 2873 |
. . . . . . . . 9
|
| 49 | 15, 15, 18, 48 | mp3an 1350 |
. . . . . . . 8
|
| 50 | 28, 37, 49 | syl2im 38 |
. . . . . . 7
|
| 51 | 26, 50 | biimtrid 152 |
. . . . . 6
|
| 52 | dfsn2 3657 |
. . . . . . . . . . 11
| |
| 53 | preq2 3721 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | eqtr2id 2253 |
. . . . . . . . . 10
|
| 55 | 54 | eqeq2d 2219 |
. . . . . . . . 9
|
| 56 | eqtr3 2227 |
. . . . . . . . . 10
| |
| 57 | 56 | expcom 116 |
. . . . . . . . 9
|
| 58 | 55, 57 | biimtrdi 163 |
. . . . . . . 8
|
| 59 | 58 | com13 80 |
. . . . . . 7
|
| 60 | 59 | imp 124 |
. . . . . 6
|
| 61 | 51, 60 | sylcom 28 |
. . . . 5
|
| 62 | 61 | exlimdvv 1922 |
. . . 4
|
| 63 | 13, 62 | mpd 13 |
. . 3
|
| 64 | 4, 8, 63 | vtocl2g 2842 |
. 2
|
| 65 | 64 | 3impia 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-fun 5292 |
| This theorem is referenced by: funopsn 5785 |
| Copyright terms: Public domain | W3C validator |