ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0 GIF version

Theorem vn0 3453
Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
vn0 V ≠ ∅

Proof of Theorem vn0
StepHypRef Expression
1 vex 2759 . 2 𝑥 ∈ V
2 ne0i 3449 . 2 (𝑥 ∈ V → V ≠ ∅)
31, 2ax-mp 5 1 V ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2160  wne 2360  Vcvv 2756  c0 3442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-v 2758  df-dif 3151  df-nul 3443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator