ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0 GIF version

Theorem vn0 3470
Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
vn0 V ≠ ∅

Proof of Theorem vn0
StepHypRef Expression
1 vex 2774 . 2 𝑥 ∈ V
2 ne0i 3466 . 2 (𝑥 ∈ V → V ≠ ∅)
31, 2ax-mp 5 1 V ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2175  wne 2375  Vcvv 2771  c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-nul 3460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator