![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ne0i | Unicode version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2776. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3452 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | neneqad 2443 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-nul 3447 |
This theorem is referenced by: ne0d 3454 ne0ii 3456 vn0 3457 inelcm 3507 rzal 3544 rexn0 3545 snnzg 3735 prnz 3740 tpnz 3743 brne0 4078 onn0 4429 nn0eln0 4648 ordge1n0im 6480 nnmord 6561 map0g 6733 phpm 6912 fiintim 6976 addclpi 7377 mulclpi 7378 uzn0 9598 iccsupr 10022 ringn0 13540 |
Copyright terms: Public domain | W3C validator |