| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ne0i | Unicode version | ||
| Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2788. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| ne0i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 3466 |
. 2
| |
| 2 | 1 | neneqad 2455 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-nul 3461 |
| This theorem is referenced by: ne0d 3468 ne0ii 3470 vn0 3471 inelcm 3521 rzal 3558 rexn0 3559 snnzg 3750 prnz 3755 tpnz 3758 brne0 4093 onn0 4447 nn0eln0 4668 ordge1n0im 6522 nnmord 6603 map0g 6775 phpm 6962 fiintim 7028 addclpi 7440 mulclpi 7441 uzn0 9664 iccsupr 10088 ringn0 13822 |
| Copyright terms: Public domain | W3C validator |