| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ne0i | Unicode version | ||
| Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2779. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| ne0i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 3457 |
. 2
| |
| 2 | 1 | neneqad 2446 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-nul 3452 |
| This theorem is referenced by: ne0d 3459 ne0ii 3461 vn0 3462 inelcm 3512 rzal 3549 rexn0 3550 snnzg 3740 prnz 3745 tpnz 3748 brne0 4083 onn0 4436 nn0eln0 4657 ordge1n0im 6495 nnmord 6576 map0g 6748 phpm 6927 fiintim 6993 addclpi 7396 mulclpi 7397 uzn0 9619 iccsupr 10043 ringn0 13626 |
| Copyright terms: Public domain | W3C validator |