| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ne0i | Unicode version | ||
| Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2793. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| ne0i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 3474 |
. 2
| |
| 2 | 1 | neneqad 2457 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-nul 3469 |
| This theorem is referenced by: ne0d 3476 ne0ii 3478 vn0 3479 inelcm 3529 rzal 3566 rexn0 3567 snnzg 3760 prnz 3766 tpnz 3769 brne0 4109 onn0 4465 nn0eln0 4686 ordge1n0im 6545 nnmord 6626 map0g 6798 phpm 6988 fiintim 7054 addclpi 7475 mulclpi 7476 uzn0 9699 iccsupr 10123 pfxn0 11179 ringn0 13937 |
| Copyright terms: Public domain | W3C validator |