![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ne0i | Unicode version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2779. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3456 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | neneqad 2446 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-nul 3451 |
This theorem is referenced by: ne0d 3458 ne0ii 3460 vn0 3461 inelcm 3511 rzal 3548 rexn0 3549 snnzg 3739 prnz 3744 tpnz 3747 brne0 4082 onn0 4435 nn0eln0 4656 ordge1n0im 6494 nnmord 6575 map0g 6747 phpm 6926 fiintim 6990 addclpi 7392 mulclpi 7393 uzn0 9614 iccsupr 10038 ringn0 13592 |
Copyright terms: Public domain | W3C validator |