![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ne0i | Unicode version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2753. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3428 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | neneqad 2426 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2739 df-dif 3131 df-nul 3423 |
This theorem is referenced by: ne0d 3430 ne0ii 3432 vn0 3433 inelcm 3483 rzal 3520 rexn0 3521 snnzg 3709 prnz 3714 tpnz 3717 brne0 4052 onn0 4400 nn0eln0 4619 ordge1n0im 6436 nnmord 6517 map0g 6687 phpm 6864 fiintim 6927 addclpi 7325 mulclpi 7326 uzn0 9542 iccsupr 9965 ringn0 13235 |
Copyright terms: Public domain | W3C validator |