ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl4ga Unicode version

Theorem vtocl4ga 2847
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) (Proof shortened by Wolf Lammen, 31-May-2025.)
Hypotheses
Ref Expression
vtocl4ga.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl4ga.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
vtocl4ga.3  |-  ( z  =  C  ->  ( ch 
<->  rh ) )
vtocl4ga.4  |-  ( w  =  D  ->  ( rh 
<->  th ) )
vtocl4ga.5  |-  ( ( ( x  e.  Q  /\  y  e.  R
)  /\  ( z  e.  S  /\  w  e.  T ) )  ->  ph )
Assertion
Ref Expression
vtocl4ga  |-  ( ( ( A  e.  Q  /\  B  e.  R
)  /\  ( C  e.  S  /\  D  e.  T ) )  ->  th )
Distinct variable groups:    x, w, y, z, A    w, B, y, z    w, C, z   
w, D    w, R, x, y, z    w, S, x, y, z    w, T, x, y, z    w, Q, x, y, z    ps, x    rh, z    th, w    ch, y
Allowed substitution hints:    ph( x, y, z, w)    ps( y, z, w)    ch( x, z, w)    th( x, y, z)    rh( x, y, w)    B( x)    C( x, y)    D( x, y, z)

Proof of Theorem vtocl4ga
StepHypRef Expression
1 vtocl4ga.3 . . . 4  |-  ( z  =  C  ->  ( ch 
<->  rh ) )
21imbi2d 230 . . 3  |-  ( z  =  C  ->  (
( ( A  e.  Q  /\  B  e.  R )  ->  ch ) 
<->  ( ( A  e.  Q  /\  B  e.  R )  ->  rh ) ) )
3 vtocl4ga.4 . . . 4  |-  ( w  =  D  ->  ( rh 
<->  th ) )
43imbi2d 230 . . 3  |-  ( w  =  D  ->  (
( ( A  e.  Q  /\  B  e.  R )  ->  rh ) 
<->  ( ( A  e.  Q  /\  B  e.  R )  ->  th )
) )
5 vtocl4ga.1 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65imbi2d 230 . . . . 5  |-  ( x  =  A  ->  (
( ( z  e.  S  /\  w  e.  T )  ->  ph )  <->  ( ( z  e.  S  /\  w  e.  T
)  ->  ps )
) )
7 vtocl4ga.2 . . . . . 6  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
87imbi2d 230 . . . . 5  |-  ( y  =  B  ->  (
( ( z  e.  S  /\  w  e.  T )  ->  ps ) 
<->  ( ( z  e.  S  /\  w  e.  T )  ->  ch ) ) )
9 vtocl4ga.5 . . . . . 6  |-  ( ( ( x  e.  Q  /\  y  e.  R
)  /\  ( z  e.  S  /\  w  e.  T ) )  ->  ph )
109ex 115 . . . . 5  |-  ( ( x  e.  Q  /\  y  e.  R )  ->  ( ( z  e.  S  /\  w  e.  T )  ->  ph )
)
116, 8, 10vtocl2ga 2843 . . . 4  |-  ( ( A  e.  Q  /\  B  e.  R )  ->  ( ( z  e.  S  /\  w  e.  T )  ->  ch ) )
1211com12 30 . . 3  |-  ( ( z  e.  S  /\  w  e.  T )  ->  ( ( A  e.  Q  /\  B  e.  R )  ->  ch ) )
132, 4, 12vtocl2ga 2843 . 2  |-  ( ( C  e.  S  /\  D  e.  T )  ->  ( ( A  e.  Q  /\  B  e.  R )  ->  th )
)
1413impcom 125 1  |-  ( ( ( A  e.  Q  /\  B  e.  R
)  /\  ( C  e.  S  /\  D  e.  T ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  wrd2ind  11194
  Copyright terms: Public domain W3C validator