ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocleg Unicode version

Theorem vtocleg 2801
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
Hypothesis
Ref Expression
vtocleg.1  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtocleg  |-  ( A  e.  V  ->  ph )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 2744 . 2  |-  ( A  e.  V  ->  E. x  x  =  A )
2 vtocleg.1 . . 3  |-  ( x  =  A  ->  ph )
32exlimiv 1591 . 2  |-  ( E. x  x  =  A  ->  ph )
41, 3syl 14 1  |-  ( A  e.  V  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   E.wex 1485    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  vtocle  2804  spsbc  2966  prexg  4196  funimaexglem  5281  eloprabga  5940  cc3  7230  bj-prexg  13946
  Copyright terms: Public domain W3C validator