ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocleg Unicode version

Theorem vtocleg 2874
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
Hypothesis
Ref Expression
vtocleg.1  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtocleg  |-  ( A  e.  V  ->  ph )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 2814 . 2  |-  ( A  e.  V  ->  E. x  x  =  A )
2 vtocleg.1 . . 3  |-  ( x  =  A  ->  ph )
32exlimiv 1644 . 2  |-  ( E. x  x  =  A  ->  ph )
41, 3syl 14 1  |-  ( A  e.  V  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  vtocle  2877  spsbc  3040  prexg  4294  funimaexglem  5403  eloprabga  6090  cc3  7450  bj-prexg  16232
  Copyright terms: Public domain W3C validator