ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocleg Unicode version

Theorem vtocleg 2810
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
Hypothesis
Ref Expression
vtocleg.1  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtocleg  |-  ( A  e.  V  ->  ph )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 2753 . 2  |-  ( A  e.  V  ->  E. x  x  =  A )
2 vtocleg.1 . . 3  |-  ( x  =  A  ->  ph )
32exlimiv 1598 . 2  |-  ( E. x  x  =  A  ->  ph )
41, 3syl 14 1  |-  ( A  e.  V  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   E.wex 1492    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  vtocle  2813  spsbc  2976  prexg  4213  funimaexglem  5301  eloprabga  5964  cc3  7269  bj-prexg  14748
  Copyright terms: Public domain W3C validator