ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl4ga GIF version

Theorem vtocl4ga 2847
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.) (Proof shortened by Wolf Lammen, 31-May-2025.)
Hypotheses
Ref Expression
vtocl4ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl4ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl4ga.3 (𝑧 = 𝐶 → (𝜒𝜌))
vtocl4ga.4 (𝑤 = 𝐷 → (𝜌𝜃))
vtocl4ga.5 (((𝑥𝑄𝑦𝑅) ∧ (𝑧𝑆𝑤𝑇)) → 𝜑)
Assertion
Ref Expression
vtocl4ga (((𝐴𝑄𝐵𝑅) ∧ (𝐶𝑆𝐷𝑇)) → 𝜃)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑦,𝑧   𝑤,𝐶,𝑧   𝑤,𝐷   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑄,𝑥,𝑦,𝑧   𝜓,𝑥   𝜌,𝑧   𝜃,𝑤   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑦,𝑧,𝑤)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑧)   𝜌(𝑥,𝑦,𝑤)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem vtocl4ga
StepHypRef Expression
1 vtocl4ga.3 . . . 4 (𝑧 = 𝐶 → (𝜒𝜌))
21imbi2d 230 . . 3 (𝑧 = 𝐶 → (((𝐴𝑄𝐵𝑅) → 𝜒) ↔ ((𝐴𝑄𝐵𝑅) → 𝜌)))
3 vtocl4ga.4 . . . 4 (𝑤 = 𝐷 → (𝜌𝜃))
43imbi2d 230 . . 3 (𝑤 = 𝐷 → (((𝐴𝑄𝐵𝑅) → 𝜌) ↔ ((𝐴𝑄𝐵𝑅) → 𝜃)))
5 vtocl4ga.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
65imbi2d 230 . . . . 5 (𝑥 = 𝐴 → (((𝑧𝑆𝑤𝑇) → 𝜑) ↔ ((𝑧𝑆𝑤𝑇) → 𝜓)))
7 vtocl4ga.2 . . . . . 6 (𝑦 = 𝐵 → (𝜓𝜒))
87imbi2d 230 . . . . 5 (𝑦 = 𝐵 → (((𝑧𝑆𝑤𝑇) → 𝜓) ↔ ((𝑧𝑆𝑤𝑇) → 𝜒)))
9 vtocl4ga.5 . . . . . 6 (((𝑥𝑄𝑦𝑅) ∧ (𝑧𝑆𝑤𝑇)) → 𝜑)
109ex 115 . . . . 5 ((𝑥𝑄𝑦𝑅) → ((𝑧𝑆𝑤𝑇) → 𝜑))
116, 8, 10vtocl2ga 2843 . . . 4 ((𝐴𝑄𝐵𝑅) → ((𝑧𝑆𝑤𝑇) → 𝜒))
1211com12 30 . . 3 ((𝑧𝑆𝑤𝑇) → ((𝐴𝑄𝐵𝑅) → 𝜒))
132, 4, 12vtocl2ga 2843 . 2 ((𝐶𝑆𝐷𝑇) → ((𝐴𝑄𝐵𝑅) → 𝜃))
1413impcom 125 1 (((𝐴𝑄𝐵𝑅) ∧ (𝐶𝑆𝐷𝑇)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  wrd2ind  11194
  Copyright terms: Public domain W3C validator