ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2ga Unicode version

Theorem vtocl2ga 2688
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtocl2ga.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl2ga.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
vtocl2ga.3  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ph )
Assertion
Ref Expression
vtocl2ga  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ch )
Distinct variable groups:    x, y, A   
y, B    x, C, y    x, D, y    ps, x    ch, y
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x)    B( x)

Proof of Theorem vtocl2ga
StepHypRef Expression
1 nfcv 2229 . 2  |-  F/_ x A
2 nfcv 2229 . 2  |-  F/_ y A
3 nfcv 2229 . 2  |-  F/_ y B
4 nfv 1467 . 2  |-  F/ x ps
5 nfv 1467 . 2  |-  F/ y ch
6 vtocl2ga.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
7 vtocl2ga.2 . 2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
8 vtocl2ga.3 . 2  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ph )
91, 2, 3, 4, 5, 6, 7, 8vtocl2gaf 2687 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290    e. wcel 1439
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622
This theorem is referenced by:  caovcan  5823  genipv  7129  fsumrelem  10926
  Copyright terms: Public domain W3C validator