![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocldf | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocld.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
vtocldf.4 |
![]() ![]() ![]() ![]() |
vtocldf.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocldf.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
vtocldf |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocldf.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | vtocldf.6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | vtocldf.4 |
. . 3
![]() ![]() ![]() ![]() | |
4 | vtocld.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | ex 115 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | alrimi 1522 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | vtocld.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 3, 7 | alrimi 1522 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | vtocld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | vtoclgft 2789 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 1, 2, 6, 8, 9, 10 | syl221anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 |
This theorem is referenced by: vtocld 2791 peano2 4596 iota2df 5204 |
Copyright terms: Public domain | W3C validator |