Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iota2df | Unicode version |
Description: A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | |
iota2df.2 | |
iota2df.3 | |
iota2df.4 | |
iota2df.5 | |
iota2df.6 |
Ref | Expression |
---|---|
iota2df |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 | |
2 | iota2df.3 | . . 3 | |
3 | simpr 110 | . . . 4 | |
4 | 3 | eqeq2d 2187 | . . 3 |
5 | 2, 4 | bibi12d 235 | . 2 |
6 | iota2df.2 | . . 3 | |
7 | iota1 5184 | . . 3 | |
8 | 6, 7 | syl 14 | . 2 |
9 | iota2df.4 | . 2 | |
10 | iota2df.6 | . 2 | |
11 | iota2df.5 | . . 3 | |
12 | nfiota1 5172 | . . . . 5 | |
13 | 12 | a1i 9 | . . . 4 |
14 | 13, 10 | nfeqd 2332 | . . 3 |
15 | 11, 14 | nfbid 1586 | . 2 |
16 | 1, 5, 8, 9, 10, 15 | vtocldf 2786 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wnf 1458 weu 2024 wcel 2146 wnfc 2304 cio 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-sn 3595 df-pr 3596 df-uni 3806 df-iota 5170 |
This theorem is referenced by: iota2d 5195 iota2 5198 riota2df 5841 |
Copyright terms: Public domain | W3C validator |