| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota2df | Unicode version | ||
| Description: A condition that allows
us to represent "the unique element such that
|
| Ref | Expression |
|---|---|
| iota2df.1 |
|
| iota2df.2 |
|
| iota2df.3 |
|
| iota2df.4 |
|
| iota2df.5 |
|
| iota2df.6 |
|
| Ref | Expression |
|---|---|
| iota2df |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 |
. 2
| |
| 2 | iota2df.3 |
. . 3
| |
| 3 | simpr 110 |
. . . 4
| |
| 4 | 3 | eqeq2d 2219 |
. . 3
|
| 5 | 2, 4 | bibi12d 235 |
. 2
|
| 6 | iota2df.2 |
. . 3
| |
| 7 | iota1 5265 |
. . 3
| |
| 8 | 6, 7 | syl 14 |
. 2
|
| 9 | iota2df.4 |
. 2
| |
| 10 | iota2df.6 |
. 2
| |
| 11 | iota2df.5 |
. . 3
| |
| 12 | nfiota1 5253 |
. . . . 5
| |
| 13 | 12 | a1i 9 |
. . . 4
|
| 14 | 13, 10 | nfeqd 2365 |
. . 3
|
| 15 | 11, 14 | nfbid 1612 |
. 2
|
| 16 | 1, 5, 8, 9, 10, 15 | vtocldf 2829 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-sn 3649 df-pr 3650 df-uni 3865 df-iota 5251 |
| This theorem is referenced by: iota2d 5277 iota2 5280 riota2df 5943 |
| Copyright terms: Public domain | W3C validator |