| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iota2df | Unicode version | ||
| Description: A condition that allows
us to represent "the unique element such that
          | 
| Ref | Expression | 
|---|---|
| iota2df.1 | 
 | 
| iota2df.2 | 
 | 
| iota2df.3 | 
 | 
| iota2df.4 | 
 | 
| iota2df.5 | 
 | 
| iota2df.6 | 
 | 
| Ref | Expression | 
|---|---|
| iota2df | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iota2df.1 | 
. 2
 | |
| 2 | iota2df.3 | 
. . 3
 | |
| 3 | simpr 110 | 
. . . 4
 | |
| 4 | 3 | eqeq2d 2208 | 
. . 3
 | 
| 5 | 2, 4 | bibi12d 235 | 
. 2
 | 
| 6 | iota2df.2 | 
. . 3
 | |
| 7 | iota1 5233 | 
. . 3
 | |
| 8 | 6, 7 | syl 14 | 
. 2
 | 
| 9 | iota2df.4 | 
. 2
 | |
| 10 | iota2df.6 | 
. 2
 | |
| 11 | iota2df.5 | 
. . 3
 | |
| 12 | nfiota1 5221 | 
. . . . 5
 | |
| 13 | 12 | a1i 9 | 
. . . 4
 | 
| 14 | 13, 10 | nfeqd 2354 | 
. . 3
 | 
| 15 | 11, 14 | nfbid 1602 | 
. 2
 | 
| 16 | 1, 5, 8, 9, 10, 15 | vtocldf 2815 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: iota2d 5245 iota2 5248 riota2df 5898 | 
| Copyright terms: Public domain | W3C validator |