ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2df Unicode version

Theorem iota2df 5177
Description: A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1  |-  ( ph  ->  B  e.  V )
iota2df.2  |-  ( ph  ->  E! x ps )
iota2df.3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
iota2df.4  |-  F/ x ph
iota2df.5  |-  ( ph  ->  F/ x ch )
iota2df.6  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
iota2df  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )

Proof of Theorem iota2df
StepHypRef Expression
1 iota2df.1 . 2  |-  ( ph  ->  B  e.  V )
2 iota2df.3 . . 3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
3 simpr 109 . . . 4  |-  ( (
ph  /\  x  =  B )  ->  x  =  B )
43eqeq2d 2177 . . 3  |-  ( (
ph  /\  x  =  B )  ->  (
( iota x ps )  =  x  <->  ( iota x ps )  =  B
) )
52, 4bibi12d 234 . 2  |-  ( (
ph  /\  x  =  B )  ->  (
( ps  <->  ( iota x ps )  =  x )  <->  ( ch  <->  ( iota x ps )  =  B ) ) )
6 iota2df.2 . . 3  |-  ( ph  ->  E! x ps )
7 iota1 5167 . . 3  |-  ( E! x ps  ->  ( ps 
<->  ( iota x ps )  =  x ) )
86, 7syl 14 . 2  |-  ( ph  ->  ( ps  <->  ( iota x ps )  =  x ) )
9 iota2df.4 . 2  |-  F/ x ph
10 iota2df.6 . 2  |-  ( ph  -> 
F/_ x B )
11 iota2df.5 . . 3  |-  ( ph  ->  F/ x ch )
12 nfiota1 5155 . . . . 5  |-  F/_ x
( iota x ps )
1312a1i 9 . . . 4  |-  ( ph  -> 
F/_ x ( iota
x ps ) )
1413, 10nfeqd 2323 . . 3  |-  ( ph  ->  F/ x ( iota
x ps )  =  B )
1511, 14nfbid 1576 . 2  |-  ( ph  ->  F/ x ( ch  <->  ( iota x ps )  =  B ) )
161, 5, 8, 9, 10, 15vtocldf 2777 1  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   F/wnf 1448   E!weu 2014    e. wcel 2136   F/_wnfc 2295   iotacio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153
This theorem is referenced by:  iota2d  5178  iota2  5179  riota2df  5818
  Copyright terms: Public domain W3C validator