ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota2df Unicode version

Theorem iota2df 5184
Description: A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
Hypotheses
Ref Expression
iota2df.1  |-  ( ph  ->  B  e.  V )
iota2df.2  |-  ( ph  ->  E! x ps )
iota2df.3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
iota2df.4  |-  F/ x ph
iota2df.5  |-  ( ph  ->  F/ x ch )
iota2df.6  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
iota2df  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )

Proof of Theorem iota2df
StepHypRef Expression
1 iota2df.1 . 2  |-  ( ph  ->  B  e.  V )
2 iota2df.3 . . 3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
3 simpr 109 . . . 4  |-  ( (
ph  /\  x  =  B )  ->  x  =  B )
43eqeq2d 2182 . . 3  |-  ( (
ph  /\  x  =  B )  ->  (
( iota x ps )  =  x  <->  ( iota x ps )  =  B
) )
52, 4bibi12d 234 . 2  |-  ( (
ph  /\  x  =  B )  ->  (
( ps  <->  ( iota x ps )  =  x )  <->  ( ch  <->  ( iota x ps )  =  B ) ) )
6 iota2df.2 . . 3  |-  ( ph  ->  E! x ps )
7 iota1 5174 . . 3  |-  ( E! x ps  ->  ( ps 
<->  ( iota x ps )  =  x ) )
86, 7syl 14 . 2  |-  ( ph  ->  ( ps  <->  ( iota x ps )  =  x ) )
9 iota2df.4 . 2  |-  F/ x ph
10 iota2df.6 . 2  |-  ( ph  -> 
F/_ x B )
11 iota2df.5 . . 3  |-  ( ph  ->  F/ x ch )
12 nfiota1 5162 . . . . 5  |-  F/_ x
( iota x ps )
1312a1i 9 . . . 4  |-  ( ph  -> 
F/_ x ( iota
x ps ) )
1413, 10nfeqd 2327 . . 3  |-  ( ph  ->  F/ x ( iota
x ps )  =  B )
1511, 14nfbid 1581 . 2  |-  ( ph  ->  F/ x ( ch  <->  ( iota x ps )  =  B ) )
161, 5, 8, 9, 10, 15vtocldf 2781 1  |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   F/wnf 1453   E!weu 2019    e. wcel 2141   F/_wnfc 2299   iotacio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by:  iota2d  5185  iota2  5188  riota2df  5829
  Copyright terms: Public domain W3C validator