| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocldf | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| vtocld.3 | ⊢ (𝜑 → 𝜓) |
| vtocldf.4 | ⊢ Ⅎ𝑥𝜑 |
| vtocldf.5 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| vtocldf.6 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| vtocldf | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocldf.5 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 2 | vtocldf.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | vtocldf.4 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | vtocld.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 6 | 3, 5 | alrimi 1536 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 7 | vtocld.3 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 8 | 3, 7 | alrimi 1536 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 9 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | vtoclgft 2814 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜒) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ∧ ∀𝑥𝜓) ∧ 𝐴 ∈ 𝑉) → 𝜒) | |
| 11 | 1, 2, 6, 8, 9, 10 | syl221anc 1260 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: vtocld 2816 peano2 4631 iota2df 5244 |
| Copyright terms: Public domain | W3C validator |