Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocldf | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
vtocld.3 | ⊢ (𝜑 → 𝜓) |
vtocldf.4 | ⊢ Ⅎ𝑥𝜑 |
vtocldf.5 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
vtocldf.6 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
vtocldf | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocldf.5 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | vtocldf.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
3 | vtocldf.4 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | vtocld.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
5 | 4 | ex 114 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
6 | 3, 5 | alrimi 1515 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
7 | vtocld.3 | . . 3 ⊢ (𝜑 → 𝜓) | |
8 | 3, 7 | alrimi 1515 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
9 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | vtoclgft 2780 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜒) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ∧ ∀𝑥𝜓) ∧ 𝐴 ∈ 𝑉) → 𝜒) | |
11 | 1, 2, 6, 8, 9, 10 | syl221anc 1244 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: vtocld 2782 peano2 4579 iota2df 5184 |
Copyright terms: Public domain | W3C validator |