ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocldf GIF version

Theorem vtocldf 2781
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1 (𝜑𝐴𝑉)
vtocld.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
vtocld.3 (𝜑𝜓)
vtocldf.4 𝑥𝜑
vtocldf.5 (𝜑𝑥𝐴)
vtocldf.6 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
vtocldf (𝜑𝜒)

Proof of Theorem vtocldf
StepHypRef Expression
1 vtocldf.5 . 2 (𝜑𝑥𝐴)
2 vtocldf.6 . 2 (𝜑 → Ⅎ𝑥𝜒)
3 vtocldf.4 . . 3 𝑥𝜑
4 vtocld.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
54ex 114 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
63, 5alrimi 1515 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
7 vtocld.3 . . 3 (𝜑𝜓)
83, 7alrimi 1515 . 2 (𝜑 → ∀𝑥𝜓)
9 vtocld.1 . 2 (𝜑𝐴𝑉)
10 vtoclgft 2780 . 2 (((𝑥𝐴 ∧ Ⅎ𝑥𝜒) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) ∧ ∀𝑥𝜓) ∧ 𝐴𝑉) → 𝜒)
111, 2, 6, 8, 9, 10syl221anc 1244 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wnf 1453  wcel 2141  wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  vtocld  2782  peano2  4579  iota2df  5184
  Copyright terms: Public domain W3C validator