ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl221anc Unicode version

Theorem syl221anc 1261
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl221anc.6  |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  et )  ->  ze )
Assertion
Ref Expression
syl221anc  |-  ( ph  ->  ze )

Proof of Theorem syl221anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . . 3  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
53, 4jca 306 . 2  |-  ( ph  ->  ( th  /\  ta ) )
6 sylXanc.5 . 2  |-  ( ph  ->  et )
7 syl221anc.6 . 2  |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  et )  ->  ze )
81, 2, 5, 6, 7syl211anc 1256 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  syl222anc  1266  vtocldf  2829  dmdcanapd  8928  exprecap  10762  fzowrddc  11138  xrbdtri  11702  2strbasg  13067  2stropg  13068  fnpr2o  13286  cnptoprest  14826  blssps  15014  blss  15015  metequiv2  15083  xmettx  15097  edgstruct  15775
  Copyright terms: Public domain W3C validator