| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclgft | Unicode version | ||
| Description: Closed theorem form of vtoclgf 2822. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elisset 2777 |
. . . . 5
| |
| 3 | 2 | 3ad2ant3 1022 |
. . . 4
|
| 4 | nfnfc1 2342 |
. . . . . . 7
| |
| 5 | nfcvd 2340 |
. . . . . . . 8
| |
| 6 | id 19 |
. . . . . . . 8
| |
| 7 | 5, 6 | nfeqd 2354 |
. . . . . . 7
|
| 8 | eqeq1 2203 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | 4, 7, 9 | cbvexd 1942 |
. . . . . 6
|
| 11 | 10 | ad2antrr 488 |
. . . . 5
|
| 12 | 11 | 3adant3 1019 |
. . . 4
|
| 13 | 3, 12 | mpbid 147 |
. . 3
|
| 14 | biimp 118 |
. . . . . . . . 9
| |
| 15 | 14 | imim2i 12 |
. . . . . . . 8
|
| 16 | 15 | com23 78 |
. . . . . . 7
|
| 17 | 16 | imp 124 |
. . . . . 6
|
| 18 | 17 | alanimi 1473 |
. . . . 5
|
| 19 | 18 | 3ad2ant2 1021 |
. . . 4
|
| 20 | simp1r 1024 |
. . . . 5
| |
| 21 | 19.23t 1691 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | mpbid 147 |
. . 3
|
| 24 | 13, 23 | mpd 13 |
. 2
|
| 25 | 1, 24 | syl3an3 1284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: vtocldf 2815 |
| Copyright terms: Public domain | W3C validator |