| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclgft | Unicode version | ||
| Description: Closed theorem form of vtoclgf 2831. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | elisset 2786 |
. . . . 5
| |
| 3 | 2 | 3ad2ant3 1023 |
. . . 4
|
| 4 | nfnfc1 2351 |
. . . . . . 7
| |
| 5 | nfcvd 2349 |
. . . . . . . 8
| |
| 6 | id 19 |
. . . . . . . 8
| |
| 7 | 5, 6 | nfeqd 2363 |
. . . . . . 7
|
| 8 | eqeq1 2212 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | 4, 7, 9 | cbvexd 1951 |
. . . . . 6
|
| 11 | 10 | ad2antrr 488 |
. . . . 5
|
| 12 | 11 | 3adant3 1020 |
. . . 4
|
| 13 | 3, 12 | mpbid 147 |
. . 3
|
| 14 | biimp 118 |
. . . . . . . . 9
| |
| 15 | 14 | imim2i 12 |
. . . . . . . 8
|
| 16 | 15 | com23 78 |
. . . . . . 7
|
| 17 | 16 | imp 124 |
. . . . . 6
|
| 18 | 17 | alanimi 1482 |
. . . . 5
|
| 19 | 18 | 3ad2ant2 1022 |
. . . 4
|
| 20 | simp1r 1025 |
. . . . 5
| |
| 21 | 19.23t 1700 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | mpbid 147 |
. . 3
|
| 24 | 13, 23 | mpd 13 |
. 2
|
| 25 | 1, 24 | syl3an3 1285 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: vtocldf 2824 |
| Copyright terms: Public domain | W3C validator |