ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclgft Unicode version

Theorem vtoclgft 2776
Description: Closed theorem form of vtoclgf 2784. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
vtoclgft  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  V )  ->  ps )

Proof of Theorem vtoclgft
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elisset 2740 . . . . 5  |-  ( A  e.  _V  ->  E. z 
z  =  A )
323ad2ant3 1010 . . . 4  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  E. z 
z  =  A )
4 nfnfc1 2311 . . . . . . 7  |-  F/ x F/_ x A
5 nfcvd 2309 . . . . . . . 8  |-  ( F/_ x A  ->  F/_ x
z )
6 id 19 . . . . . . . 8  |-  ( F/_ x A  ->  F/_ x A )
75, 6nfeqd 2323 . . . . . . 7  |-  ( F/_ x A  ->  F/ x  z  =  A )
8 eqeq1 2172 . . . . . . . 8  |-  ( z  =  x  ->  (
z  =  A  <->  x  =  A ) )
98a1i 9 . . . . . . 7  |-  ( F/_ x A  ->  ( z  =  x  ->  (
z  =  A  <->  x  =  A ) ) )
104, 7, 9cbvexd 1915 . . . . . 6  |-  ( F/_ x A  ->  ( E. z  z  =  A  <->  E. x  x  =  A ) )
1110ad2antrr 480 . . . . 5  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph ) )  -> 
( E. z  z  =  A  <->  E. x  x  =  A )
)
12113adant3 1007 . . . 4  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  ( E. z  z  =  A 
<->  E. x  x  =  A ) )
133, 12mpbid 146 . . 3  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  E. x  x  =  A )
14 biimp 117 . . . . . . . . 9  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
1514imim2i 12 . . . . . . . 8  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ph  ->  ps ) ) )
1615com23 78 . . . . . . 7  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( ph  ->  ( x  =  A  ->  ps ) ) )
1716imp 123 . . . . . 6  |-  ( ( ( x  =  A  ->  ( ph  <->  ps )
)  /\  ph )  -> 
( x  =  A  ->  ps ) )
1817alanimi 1447 . . . . 5  |-  ( ( A. x ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A. x ph )  ->  A. x ( x  =  A  ->  ps )
)
19183ad2ant2 1009 . . . 4  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  A. x
( x  =  A  ->  ps ) )
20 simp1r 1012 . . . . 5  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  F/ x ps )
21 19.23t 1665 . . . . 5  |-  ( F/ x ps  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
2220, 21syl 14 . . . 4  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
2319, 22mpbid 146 . . 3  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  ( E. x  x  =  A  ->  ps ) )
2413, 23mpd 13 . 2  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  _V )  ->  ps )
251, 24syl3an3 1263 1  |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  V )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968   A.wal 1341    = wceq 1343   F/wnf 1448   E.wex 1480    e. wcel 2136   F/_wnfc 2295   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  vtocldf  2777
  Copyright terms: Public domain W3C validator