Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclgft | Unicode version |
Description: Closed theorem form of vtoclgf 2784. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | elisset 2740 | . . . . 5 | |
3 | 2 | 3ad2ant3 1010 | . . . 4 |
4 | nfnfc1 2311 | . . . . . . 7 | |
5 | nfcvd 2309 | . . . . . . . 8 | |
6 | id 19 | . . . . . . . 8 | |
7 | 5, 6 | nfeqd 2323 | . . . . . . 7 |
8 | eqeq1 2172 | . . . . . . . 8 | |
9 | 8 | a1i 9 | . . . . . . 7 |
10 | 4, 7, 9 | cbvexd 1915 | . . . . . 6 |
11 | 10 | ad2antrr 480 | . . . . 5 |
12 | 11 | 3adant3 1007 | . . . 4 |
13 | 3, 12 | mpbid 146 | . . 3 |
14 | biimp 117 | . . . . . . . . 9 | |
15 | 14 | imim2i 12 | . . . . . . . 8 |
16 | 15 | com23 78 | . . . . . . 7 |
17 | 16 | imp 123 | . . . . . 6 |
18 | 17 | alanimi 1447 | . . . . 5 |
19 | 18 | 3ad2ant2 1009 | . . . 4 |
20 | simp1r 1012 | . . . . 5 | |
21 | 19.23t 1665 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | 19, 22 | mpbid 146 | . . 3 |
24 | 13, 23 | mpd 13 | . 2 |
25 | 1, 24 | syl3an3 1263 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wal 1341 wceq 1343 wnf 1448 wex 1480 wcel 2136 wnfc 2295 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: vtocldf 2777 |
Copyright terms: Public domain | W3C validator |