ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocle Unicode version

Theorem vtocle 2800
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
vtocle.1  |-  A  e. 
_V
vtocle.2  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtocle  |-  ph
Distinct variable groups:    x, A    ph, x

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.1 . 2  |-  A  e. 
_V
2 vtocle.2 . . 3  |-  ( x  =  A  ->  ph )
32vtocleg 2797 . 2  |-  ( A  e.  _V  ->  ph )
41, 3ax-mp 5 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  repizf2  4141  nn0ind-raph  9308
  Copyright terms: Public domain W3C validator