ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocle Unicode version

Theorem vtocle 2838
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
vtocle.1  |-  A  e. 
_V
vtocle.2  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtocle  |-  ph
Distinct variable groups:    x, A    ph, x

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.1 . 2  |-  A  e. 
_V
2 vtocle.2 . . 3  |-  ( x  =  A  ->  ph )
32vtocleg 2835 . 2  |-  ( A  e.  _V  ->  ph )
41, 3ax-mp 5 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  repizf2  4195  nn0ind-raph  9443
  Copyright terms: Public domain W3C validator