Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclef | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
vtoclef.1 | |
vtoclef.2 | |
vtoclef.3 |
Ref | Expression |
---|---|
vtoclef |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclef.2 | . . 3 | |
2 | 1 | isseti 2734 | . 2 |
3 | vtoclef.1 | . . 3 | |
4 | vtoclef.3 | . . 3 | |
5 | 3, 4 | exlimi 1582 | . 2 |
6 | 2, 5 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wnf 1448 wex 1480 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: nn0ind-raph 9308 |
Copyright terms: Public domain | W3C validator |