ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclef Unicode version

Theorem vtoclef 2822
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1  |-  F/ x ph
vtoclef.2  |-  A  e. 
_V
vtoclef.3  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtoclef  |-  ph
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3  |-  A  e. 
_V
21isseti 2757 . 2  |-  E. x  x  =  A
3 vtoclef.1 . . 3  |-  F/ x ph
4 vtoclef.3 . . 3  |-  ( x  =  A  ->  ph )
53, 4exlimi 1604 . 2  |-  ( E. x  x  =  A  ->  ph )
62, 5ax-mp 5 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363   F/wnf 1470   E.wex 1502    e. wcel 2158   _Vcvv 2749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-v 2751
This theorem is referenced by:  nn0ind-raph  9383
  Copyright terms: Public domain W3C validator