ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocle GIF version

Theorem vtocle 2823
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
vtocle.1 𝐴 ∈ V
vtocle.2 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocle 𝜑
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.1 . 2 𝐴 ∈ V
2 vtocle.2 . . 3 (𝑥 = 𝐴𝜑)
32vtocleg 2820 . 2 (𝐴 ∈ V → 𝜑)
41, 3ax-mp 5 1 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  Vcvv 2749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-v 2751
This theorem is referenced by:  repizf2  4174  nn0ind-raph  9383
  Copyright terms: Public domain W3C validator