![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimi | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
exlimi.1 |
![]() ![]() ![]() ![]() |
exlimi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimi.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfri 1530 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | exlimi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | exlimih 1604 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-4 1521 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: 19.36i 1683 cbvexv1 1763 euexex 2127 ceqsex 2798 sbhypf 2810 vtoclgf 2819 vtoclg1f 2820 vtoclef 2834 copsexg 4274 copsex2g 4276 ralxpf 4809 rexxpf 4810 dmcoss 4932 fv3 5578 tz6.12c 5585 0neqopab 5964 cnvoprab 6289 bj-exlimmpi 15332 |
Copyright terms: Public domain | W3C validator |