ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclegft Unicode version

Theorem vtoclegft 2852
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2853.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
Assertion
Ref Expression
vtoclegft  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ph )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem vtoclegft
StepHypRef Expression
1 elisset 2791 . . . 4  |-  ( A  e.  B  ->  E. x  x  =  A )
2 exim 1623 . . . 4  |-  ( A. x ( x  =  A  ->  ph )  -> 
( E. x  x  =  A  ->  E. x ph ) )
31, 2mpan9 281 . . 3  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ph ) )  ->  E. x ph )
433adant2 1019 . 2  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  E. x ph )
5 19.9t 1666 . . 3  |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
653ad2ant2 1022 . 2  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ( E. x ph 
<-> 
ph ) )
74, 6mpbid 147 1  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373   F/wnf 1484   E.wex 1516    e. wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator