ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclegft Unicode version

Theorem vtoclegft 2798
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2799.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
Assertion
Ref Expression
vtoclegft  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ph )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem vtoclegft
StepHypRef Expression
1 elisset 2740 . . . 4  |-  ( A  e.  B  ->  E. x  x  =  A )
2 exim 1587 . . . 4  |-  ( A. x ( x  =  A  ->  ph )  -> 
( E. x  x  =  A  ->  E. x ph ) )
31, 2mpan9 279 . . 3  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ph ) )  ->  E. x ph )
433adant2 1006 . 2  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  E. x ph )
5 19.9t 1630 . . 3  |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
653ad2ant2 1009 . 2  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ( E. x ph 
<-> 
ph ) )
74, 6mpbid 146 1  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968   A.wal 1341    = wceq 1343   F/wnf 1448   E.wex 1480    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator