ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclegft Unicode version

Theorem vtoclegft 2875
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2876.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
Assertion
Ref Expression
vtoclegft  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ph )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem vtoclegft
StepHypRef Expression
1 elisset 2814 . . . 4  |-  ( A  e.  B  ->  E. x  x  =  A )
2 exim 1645 . . . 4  |-  ( A. x ( x  =  A  ->  ph )  -> 
( E. x  x  =  A  ->  E. x ph ) )
31, 2mpan9 281 . . 3  |-  ( ( A  e.  B  /\  A. x ( x  =  A  ->  ph ) )  ->  E. x ph )
433adant2 1040 . 2  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  E. x ph )
5 19.9t 1688 . . 3  |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
653ad2ant2 1043 . 2  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ( E. x ph 
<-> 
ph ) )
74, 6mpbid 147 1  |-  ( ( A  e.  B  /\  F/ x ph  /\  A. x ( x  =  A  ->  ph ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002   A.wal 1393    = wceq 1395   F/wnf 1506   E.wex 1538    e. wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator