![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclef | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
vtoclef.1 | ⊢ Ⅎ𝑥𝜑 |
vtoclef.2 | ⊢ 𝐴 ∈ V |
vtoclef.3 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtoclef | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclef.2 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 2760 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
3 | vtoclef.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | vtoclef.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
5 | 3, 4 | exlimi 1605 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Ⅎwnf 1471 ∃wex 1503 ∈ wcel 2160 Vcvv 2752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: nn0ind-raph 9400 |
Copyright terms: Public domain | W3C validator |