ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfausab Unicode version

Theorem zfausab 3973
Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
Hypothesis
Ref Expression
zfausab.1  |-  A  e. 
_V
Assertion
Ref Expression
zfausab  |-  { x  |  ( x  e.  A  /\  ph ) }  e.  _V
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem zfausab
StepHypRef Expression
1 zfausab.1 . 2  |-  A  e. 
_V
2 ssab2 3103 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
31, 2ssexi 3969 1  |-  { x  |  ( x  e.  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 102    e. wcel 1438   {cab 2074   _Vcvv 2619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3003  df-ss 3010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator