ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfausab Unicode version

Theorem zfausab 4131
Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
Hypothesis
Ref Expression
zfausab.1  |-  A  e. 
_V
Assertion
Ref Expression
zfausab  |-  { x  |  ( x  e.  A  /\  ph ) }  e.  _V
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem zfausab
StepHypRef Expression
1 zfausab.1 . 2  |-  A  e. 
_V
2 ssab2 3231 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
31, 2ssexi 4127 1  |-  { x  |  ( x  e.  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2141   {cab 2156   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator