ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difexg Unicode version

Theorem difexg 4139
Description: Existence of a difference. (Contributed by NM, 26-May-1998.)
Assertion
Ref Expression
difexg  |-  ( A  e.  V  ->  ( A  \  B )  e. 
_V )

Proof of Theorem difexg
StepHypRef Expression
1 difss 3259 . 2  |-  ( A 
\  B )  C_  A
2 ssexg 4137 . 2  |-  ( ( ( A  \  B
)  C_  A  /\  A  e.  V )  ->  ( A  \  B
)  e.  _V )
31, 2mpan 424 1  |-  ( A  e.  V  ->  ( A  \  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   _Vcvv 2735    \ cdif 3124    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-dif 3129  df-in 3133  df-ss 3140
This theorem is referenced by:  frirrg  4344  2oconcl  6430  phplem4dom  6852  fidifsnen  6860  findcard  6878  findcard2  6879  findcard2s  6880  fisseneq  6921  difinfsn  7089  ismkvnex  7143  exmidfodomrlemim  7190
  Copyright terms: Public domain W3C validator