ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difexg Unicode version

Theorem difexg 4201
Description: Existence of a difference. (Contributed by NM, 26-May-1998.)
Assertion
Ref Expression
difexg  |-  ( A  e.  V  ->  ( A  \  B )  e. 
_V )

Proof of Theorem difexg
StepHypRef Expression
1 difss 3307 . 2  |-  ( A 
\  B )  C_  A
2 ssexg 4199 . 2  |-  ( ( ( A  \  B
)  C_  A  /\  A  e.  V )  ->  ( A  \  B
)  e.  _V )
31, 2mpan 424 1  |-  ( A  e.  V  ->  ( A  \  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   _Vcvv 2776    \ cdif 3171    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187
This theorem is referenced by:  frirrg  4415  2oconcl  6548  phplem4dom  6984  fidifsnen  6993  findcard  7011  findcard2  7012  findcard2s  7013  fisseneq  7057  difinfsn  7228  ismkvnex  7283  exmidfodomrlemim  7340
  Copyright terms: Public domain W3C validator