ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab2 Unicode version

Theorem ssab2 3277
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( x  e.  A  /\  ph )  ->  x  e.  A )
21abssi 3268 1  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2176   {cab 2191    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179
This theorem is referenced by:  ssrab2  3278  zfausab  4186  exss  4271  dmopabss  4890  fabexg  5463
  Copyright terms: Public domain W3C validator