ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab2 Unicode version

Theorem ssab2 3267
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( x  e.  A  /\  ph )  ->  x  e.  A )
21abssi 3258 1  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2167   {cab 2182    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170
This theorem is referenced by:  ssrab2  3268  zfausab  4175  exss  4260  dmopabss  4878  fabexg  5445
  Copyright terms: Public domain W3C validator