ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab2 Unicode version

Theorem ssab2 3226
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 108 . 2  |-  ( ( x  e.  A  /\  ph )  ->  x  e.  A )
21abssi 3217 1  |-  { x  |  ( x  e.  A  /\  ph ) }  C_  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2136   {cab 2151    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  ssrab2  3227  zfausab  4124  exss  4205  dmopabss  4816  fabexg  5375
  Copyright terms: Public domain W3C validator