| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | Unicode version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3278 |
. 2
| |
| 2 | ssexg 4183 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: rabex 4188 rabexd 4189 exmidsssnc 4247 exse 4383 frind 4399 elfvmptrab1 5674 elovmporab 6146 elovmporab1w 6147 mpoxopoveq 6326 diffitest 6984 supex2g 7135 cc4f 7381 omctfn 12814 ismhm 13293 mhmex 13294 issubm 13304 issubg 13509 subgex 13512 isnsg 13538 isrim0 13923 issubrng 13961 issubrg 13983 rrgval 14024 lssex 14116 lsssetm 14118 psrval 14428 psrplusgg 14440 psraddcl 14442 epttop 14562 cldval 14571 neif 14613 neival 14615 cnfval 14666 cnovex 14668 cnpval 14670 hmeofn 14774 hmeofvalg 14775 ispsmet 14795 ismet 14816 isxmet 14817 blvalps 14860 blval 14861 cncfval 15044 |
| Copyright terms: Public domain | W3C validator |