ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabexg Unicode version

Theorem rabexg 4124
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.)
Assertion
Ref Expression
rabexg  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem rabexg
StepHypRef Expression
1 ssrab2 3226 . 2  |-  { x  e.  A  |  ph }  C_  A
2 ssexg 4120 . 2  |-  ( ( { x  e.  A  |  ph }  C_  A  /\  A  e.  V
)  ->  { x  e.  A  |  ph }  e.  _V )
31, 2mpan 421 1  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   {crab 2447   _Vcvv 2725    C_ wss 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4099
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rab 2452  df-v 2727  df-in 3121  df-ss 3128
This theorem is referenced by:  rabex  4125  exmidsssnc  4181  exse  4313  frind  4329  elfvmptrab1  5579  mpoxopoveq  6204  diffitest  6849  supex2g  6994  cc4f  7206  omctfn  12372  epttop  12690  cldval  12699  neif  12741  neival  12743  cnfval  12794  cnovex  12796  cnpval  12798  hmeofn  12902  hmeofvalg  12903  ispsmet  12923  ismet  12944  isxmet  12945  blvalps  12988  blval  12989  cncfval  13159
  Copyright terms: Public domain W3C validator