| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | Unicode version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 |
. 2
| |
| 2 | ssexg 4223 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: rabex 4228 rabexd 4229 exmidsssnc 4287 exse 4427 frind 4443 elfvmptrab1 5729 elovmporab 6205 elovmporab1w 6206 mpoxopoveq 6386 diffitest 7049 supex2g 7200 cc4f 7455 omctfn 13014 ismhm 13494 mhmex 13495 issubm 13505 issubg 13710 subgex 13713 isnsg 13739 isrim0 14125 issubrng 14163 issubrg 14185 rrgval 14226 lssex 14318 lsssetm 14320 psrval 14630 psrplusgg 14642 psraddcl 14644 epttop 14764 cldval 14773 neif 14815 neival 14817 cnfval 14868 cnovex 14870 cnpval 14872 hmeofn 14976 hmeofvalg 14977 ispsmet 14997 ismet 15018 isxmet 15019 blvalps 15062 blval 15063 cncfval 15246 |
| Copyright terms: Public domain | W3C validator |