| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | Unicode version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3278 |
. 2
| |
| 2 | ssexg 4184 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: rabex 4189 rabexd 4190 exmidsssnc 4248 exse 4384 frind 4400 elfvmptrab1 5676 elovmporab 6148 elovmporab1w 6149 mpoxopoveq 6328 diffitest 6986 supex2g 7137 cc4f 7383 omctfn 12847 ismhm 13326 mhmex 13327 issubm 13337 issubg 13542 subgex 13545 isnsg 13571 isrim0 13956 issubrng 13994 issubrg 14016 rrgval 14057 lssex 14149 lsssetm 14151 psrval 14461 psrplusgg 14473 psraddcl 14475 epttop 14595 cldval 14604 neif 14646 neival 14648 cnfval 14699 cnovex 14701 cnpval 14703 hmeofn 14807 hmeofvalg 14808 ispsmet 14828 ismet 14849 isxmet 14850 blvalps 14893 blval 14894 cncfval 15077 |
| Copyright terms: Public domain | W3C validator |