| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexg | Unicode version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| rabexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3286 |
. 2
| |
| 2 | ssexg 4199 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: rabex 4204 rabexd 4205 exmidsssnc 4263 exse 4401 frind 4417 elfvmptrab1 5697 elovmporab 6169 elovmporab1w 6170 mpoxopoveq 6349 diffitest 7010 supex2g 7161 cc4f 7416 omctfn 12929 ismhm 13408 mhmex 13409 issubm 13419 issubg 13624 subgex 13627 isnsg 13653 isrim0 14038 issubrng 14076 issubrg 14098 rrgval 14139 lssex 14231 lsssetm 14233 psrval 14543 psrplusgg 14555 psraddcl 14557 epttop 14677 cldval 14686 neif 14728 neival 14730 cnfval 14781 cnovex 14783 cnpval 14785 hmeofn 14889 hmeofvalg 14890 ispsmet 14910 ismet 14931 isxmet 14932 blvalps 14975 blval 14976 cncfval 15159 |
| Copyright terms: Public domain | W3C validator |