ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc GIF version

Theorem nfdc 1705
Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1 𝑥𝜑
Assertion
Ref Expression
nfdc 𝑥DECID 𝜑

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 840 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 nfdc.1 . . 3 𝑥𝜑
32nfn 1704 . . 3 𝑥 ¬ 𝜑
42, 3nfor 1620 . 2 𝑥(𝜑 ∨ ¬ 𝜑)
51, 4nfxfr 1520 1 𝑥DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 713  DECID wdc 839  wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-gen 1495  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by:  19.32dc  1725  finexdc  7060  ssfirab  7094  opabfi  7096  dcfi  7144  exfzdc  10441  zsupcllemstep  10444  infssuzex  10448  nfsum1  11862  nfsum  11863  nfcprod1  12060  nfcprod  12061  nnwosdc  12555  ctiunctlemudc  13003  iswomninnlem  16376
  Copyright terms: Public domain W3C validator