| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdc | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.) |
| Ref | Expression |
|---|---|
| nfdc.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfdc | ⊢ Ⅎ𝑥DECID 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | nfdc.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1682 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 2, 3 | nfor 1598 | . 2 ⊢ Ⅎ𝑥(𝜑 ∨ ¬ 𝜑) |
| 5 | 1, 4 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥DECID 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∨ wo 710 DECID wdc 836 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1485 |
| This theorem is referenced by: 19.32dc 1703 finexdc 7014 ssfirab 7048 opabfi 7050 dcfi 7098 exfzdc 10391 zsupcllemstep 10394 infssuzex 10398 nfsum1 11742 nfsum 11743 nfcprod1 11940 nfcprod 11941 nnwosdc 12435 ctiunctlemudc 12883 iswomninnlem 16129 |
| Copyright terms: Public domain | W3C validator |