ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc GIF version

Theorem nfdc 1659
Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1 𝑥𝜑
Assertion
Ref Expression
nfdc 𝑥DECID 𝜑

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 835 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 nfdc.1 . . 3 𝑥𝜑
32nfn 1658 . . 3 𝑥 ¬ 𝜑
42, 3nfor 1574 . 2 𝑥(𝜑 ∨ ¬ 𝜑)
51, 4nfxfr 1474 1 𝑥DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 708  DECID wdc 834  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie2 1494  ax-4 1510  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-fal 1359  df-nf 1461
This theorem is referenced by:  19.32dc  1679  finexdc  6904  ssfirab  6935  dcfi  6982  exfzdc  10242  nfsum1  11366  nfsum  11367  nfcprod1  11564  nfcprod  11565  zsupcllemstep  11948  infssuzex  11952  nnwosdc  12042  ctiunctlemudc  12440  iswomninnlem  14882
  Copyright terms: Public domain W3C validator