ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc GIF version

Theorem nfdc 1639
Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1 𝑥𝜑
Assertion
Ref Expression
nfdc 𝑥DECID 𝜑

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 821 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 nfdc.1 . . 3 𝑥𝜑
32nfn 1638 . . 3 𝑥 ¬ 𝜑
42, 3nfor 1554 . 2 𝑥(𝜑 ∨ ¬ 𝜑)
51, 4nfxfr 1454 1 𝑥DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 698  DECID wdc 820  wnf 1440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-gen 1429  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1338  df-fal 1341  df-nf 1441
This theorem is referenced by:  19.32dc  1659  finexdc  6847  ssfirab  6878  dcfi  6925  exfzdc  10139  nfsum1  11253  nfsum  11254  nfcprod1  11451  nfcprod  11452  zsupcllemstep  11832  infssuzex  11836  ctiunctlemudc  12177  iswomninnlem  13631
  Copyright terms: Public domain W3C validator