ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc GIF version

Theorem nfdc 1673
Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1 𝑥𝜑
Assertion
Ref Expression
nfdc 𝑥DECID 𝜑

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 836 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 nfdc.1 . . 3 𝑥𝜑
32nfn 1672 . . 3 𝑥 ¬ 𝜑
42, 3nfor 1588 . 2 𝑥(𝜑 ∨ ¬ 𝜑)
51, 4nfxfr 1488 1 𝑥DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 709  DECID wdc 835  wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-gen 1463  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1475
This theorem is referenced by:  19.32dc  1693  finexdc  6963  ssfirab  6995  opabfi  6997  dcfi  7045  exfzdc  10313  nfsum1  11505  nfsum  11506  nfcprod1  11703  nfcprod  11704  zsupcllemstep  12088  infssuzex  12092  nnwosdc  12182  ctiunctlemudc  12630  iswomninnlem  15660
  Copyright terms: Public domain W3C validator