ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc GIF version

Theorem nfdc 1673
Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1 𝑥𝜑
Assertion
Ref Expression
nfdc 𝑥DECID 𝜑

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 836 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 nfdc.1 . . 3 𝑥𝜑
32nfn 1672 . . 3 𝑥 ¬ 𝜑
42, 3nfor 1588 . 2 𝑥(𝜑 ∨ ¬ 𝜑)
51, 4nfxfr 1488 1 𝑥DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 709  DECID wdc 835  wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-gen 1463  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1475
This theorem is referenced by:  19.32dc  1693  finexdc  6965  ssfirab  6999  opabfi  7001  dcfi  7049  exfzdc  10319  zsupcllemstep  10322  infssuzex  10326  nfsum1  11524  nfsum  11525  nfcprod1  11722  nfcprod  11723  nnwosdc  12217  ctiunctlemudc  12665  iswomninnlem  15720
  Copyright terms: Public domain W3C validator