| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfdc | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.) |
| Ref | Expression |
|---|---|
| nfdc.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfdc | ⊢ Ⅎ𝑥DECID 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | nfdc.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1672 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 2, 3 | nfor 1588 | . 2 ⊢ Ⅎ𝑥(𝜑 ∨ ¬ 𝜑) |
| 5 | 1, 4 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥DECID 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∨ wo 709 DECID wdc 835 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 |
| This theorem is referenced by: 19.32dc 1693 finexdc 6964 ssfirab 6998 opabfi 7000 dcfi 7048 exfzdc 10318 zsupcllemstep 10321 infssuzex 10325 nfsum1 11523 nfsum 11524 nfcprod1 11721 nfcprod 11722 nnwosdc 12216 ctiunctlemudc 12664 iswomninnlem 15703 |
| Copyright terms: Public domain | W3C validator |