ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdc GIF version

Theorem nfdc 1683
Description: If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypothesis
Ref Expression
nfdc.1 𝑥𝜑
Assertion
Ref Expression
nfdc 𝑥DECID 𝜑

Proof of Theorem nfdc
StepHypRef Expression
1 df-dc 837 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 nfdc.1 . . 3 𝑥𝜑
32nfn 1682 . . 3 𝑥 ¬ 𝜑
42, 3nfor 1598 . 2 𝑥(𝜑 ∨ ¬ 𝜑)
51, 4nfxfr 1498 1 𝑥DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 710  DECID wdc 836  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-gen 1473  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485
This theorem is referenced by:  19.32dc  1703  finexdc  7014  ssfirab  7048  opabfi  7050  dcfi  7098  exfzdc  10391  zsupcllemstep  10394  infssuzex  10398  nfsum1  11742  nfsum  11743  nfcprod1  11940  nfcprod  11941  nnwosdc  12435  ctiunctlemudc  12883  iswomninnlem  16129
  Copyright terms: Public domain W3C validator