ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl3 GIF version

Theorem 3ad2antl3 1151
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl3 (((𝜓𝜏𝜑) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl3
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantll 468 . 2 (((𝜏𝜑) ∧ 𝜒) → 𝜃)
323adantl1 1143 1 (((𝜓𝜏𝜑) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  rspc3ev  2847  brcogw  4773  cocan1  5755  ov6g  5979  prarloclemarch2  7360  ltpopr  7536  ltsopr  7537  zdivmul  9281  lcmdvds  12011
  Copyright terms: Public domain W3C validator