ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl3 GIF version

Theorem 3ad2antl3 1161
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl3 (((𝜓𝜏𝜑) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl3
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantll 476 . 2 (((𝜏𝜑) ∧ 𝜒) → 𝜃)
323adantl1 1153 1 (((𝜓𝜏𝜑) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  rspc3ev  2860  brcogw  4798  cocan1  5790  ov6g  6014  prarloclemarch2  7420  ltpopr  7596  ltsopr  7597  zdivmul  9345  lcmdvds  12081
  Copyright terms: Public domain W3C validator