| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl3 | GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl3 | ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantll 476 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1155 | 1 ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: rspc3ev 2885 brcogw 4835 cocan1 5834 ov6g 6061 prarloclemarch2 7486 ltpopr 7662 ltsopr 7663 zdivmul 9416 lcmdvds 12247 |
| Copyright terms: Public domain | W3C validator |