ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmdvds GIF version

Theorem lcmdvds 12033
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 19 . . . . . . 7 (0 ∥ 𝐾 → 0 ∥ 𝐾)
2 breq1 3992 . . . . . . . . 9 (𝑀 = 0 → (𝑀𝐾 ↔ 0 ∥ 𝐾))
32adantl 275 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 ↔ 0 ∥ 𝐾))
4 oveq1 5860 . . . . . . . . . 10 (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
5 0z 9223 . . . . . . . . . . . 12 0 ∈ ℤ
6 lcmcom 12018 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = (𝑁 lcm 0))
75, 6mpan 422 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 lcm 𝑁) = (𝑁 lcm 0))
8 lcm0val 12019 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
97, 8eqtrd 2203 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
104, 9sylan9eqr 2225 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
1110breq1d 3999 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
123, 11imbi12d 233 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
131, 12mpbiri 167 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
14133ad2antl3 1156 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
1514adantrd 277 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
1615ex 114 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
17 breq1 3992 . . . . . . . . 9 (𝑁 = 0 → (𝑁𝐾 ↔ 0 ∥ 𝐾))
1817adantl 275 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 ↔ 0 ∥ 𝐾))
19 oveq2 5861 . . . . . . . . . 10 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
20 lcm0val 12019 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2119, 20sylan9eqr 2225 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
2221breq1d 3999 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
2318, 22imbi12d 233 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
241, 23mpbiri 167 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
25243ad2antl2 1155 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
2625adantld 276 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
2726ex 114 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
2816, 27jaod 712 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
29 neanior 2427 . . . . . 6 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
30 lcmcl 12026 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
3130nn0zd 9332 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
32 dvds0 11768 . . . . . . . . . . . . . . . . 17 ((𝑀 lcm 𝑁) ∈ ℤ → (𝑀 lcm 𝑁) ∥ 0)
3331, 32syl 14 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∥ 0)
3433a1d 22 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
3534adantr 274 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
36 breq2 3993 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑀𝐾𝑀 ∥ 0))
37 breq2 3993 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑁𝐾𝑁 ∥ 0))
3836, 37anbi12d 470 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀𝐾𝑁𝐾) ↔ (𝑀 ∥ 0 ∧ 𝑁 ∥ 0)))
39 breq2 3993 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ 0))
4038, 39imbi12d 233 . . . . . . . . . . . . . . 15 (𝐾 = 0 → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4140adantl 275 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4235, 41mpbird 166 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4342adantrl 475 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4443adantllr 478 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4544adantlrr 480 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4645anassrs 398 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
47 nnabscl 11064 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
48 nnabscl 11064 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
49 nnabscl 11064 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (abs‘𝐾) ∈ ℕ)
50 lcmgcdlem 12031 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾))))
5150simprd 113 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5249, 51sylani 404 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5347, 48, 52syl2an 287 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5453expdimp 257 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
55 dvdsabsb 11772 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾𝑀 ∥ (abs‘𝐾)))
56 zabscl 11050 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℤ)
57 absdvdsb 11771 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5856, 57sylan2 284 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5955, 58bitrd 187 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
6059adantlr 474 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
61 dvdsabsb 11772 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾𝑁 ∥ (abs‘𝐾)))
62 absdvdsb 11771 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6356, 62sylan2 284 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6461, 63bitrd 187 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6564adantll 473 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6660, 65anbi12d 470 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) ↔ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))))
6766bicomd 140 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) ↔ (𝑀𝐾𝑁𝐾)))
68 lcmabs 12030 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
6968breq1d 3999 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7069adantr 274 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
71 dvdsabsb 11772 . . . . . . . . . . . . . . . . 17 (((𝑀 lcm 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7231, 71sylan 281 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7370, 72bitr4d 190 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾))
7467, 73imbi12d 233 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7574adantrr 476 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7675adantllr 478 . . . . . . . . . . . 12 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7776adantlrr 480 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7854, 77mpbid 146 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7978anassrs 398 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 ≠ 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
80 zdceq 9287 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐾 = 0)
815, 80mpan2 423 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → DECID 𝐾 = 0)
82 exmiddc 831 . . . . . . . . . . . 12 (DECID 𝐾 = 0 → (𝐾 = 0 ∨ ¬ 𝐾 = 0))
8381, 82syl 14 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 = 0 ∨ ¬ 𝐾 = 0))
84 df-ne 2341 . . . . . . . . . . . 12 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
8584orbi2i 757 . . . . . . . . . . 11 ((𝐾 = 0 ∨ 𝐾 ≠ 0) ↔ (𝐾 = 0 ∨ ¬ 𝐾 = 0))
8683, 85sylibr 133 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 = 0 ∨ 𝐾 ≠ 0))
8786adantl 275 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) → (𝐾 = 0 ∨ 𝐾 ≠ 0))
8846, 79, 87mpjaodan 793 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
8988ex 114 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
9089an4s 583 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
9129, 90sylan2br 286 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
9291impancom 258 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
93923impa 1189 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
94933comr 1206 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
95 lcmmndc 12016 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
96 exmiddc 831 . . . 4 (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
9795, 96syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
98973adant1 1010 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
9928, 94, 98mpjaod 713 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  wne 2340   class class class wbr 3989  cfv 5198  (class class class)co 5853  0cc0 7774   · cmul 7779  cn 8878  cz 9212  abscabs 10961  cdvds 11749   gcd cgcd 11897   lcm clcm 12014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-lcm 12015
This theorem is referenced by:  lcmdvdsb  12038
  Copyright terms: Public domain W3C validator