ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmdvds GIF version

Theorem lcmdvds 12567
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 19 . . . . . . 7 (0 ∥ 𝐾 → 0 ∥ 𝐾)
2 breq1 4065 . . . . . . . . 9 (𝑀 = 0 → (𝑀𝐾 ↔ 0 ∥ 𝐾))
32adantl 277 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 ↔ 0 ∥ 𝐾))
4 oveq1 5981 . . . . . . . . . 10 (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
5 0z 9425 . . . . . . . . . . . 12 0 ∈ ℤ
6 lcmcom 12552 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = (𝑁 lcm 0))
75, 6mpan 424 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 lcm 𝑁) = (𝑁 lcm 0))
8 lcm0val 12553 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
97, 8eqtrd 2242 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
104, 9sylan9eqr 2264 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
1110breq1d 4072 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
123, 11imbi12d 234 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
131, 12mpbiri 168 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
14133ad2antl3 1166 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
1514adantrd 279 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
1615ex 115 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
17 breq1 4065 . . . . . . . . 9 (𝑁 = 0 → (𝑁𝐾 ↔ 0 ∥ 𝐾))
1817adantl 277 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 ↔ 0 ∥ 𝐾))
19 oveq2 5982 . . . . . . . . . 10 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
20 lcm0val 12553 . . . . . . . . . 10 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2119, 20sylan9eqr 2264 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
2221breq1d 4072 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
2318, 22imbi12d 234 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
241, 23mpbiri 168 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
25243ad2antl2 1165 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
2625adantld 278 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
2726ex 115 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
2816, 27jaod 721 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
29 neanior 2467 . . . . . 6 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
30 lcmcl 12560 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
3130nn0zd 9535 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
32 dvds0 12283 . . . . . . . . . . . . . . . . 17 ((𝑀 lcm 𝑁) ∈ ℤ → (𝑀 lcm 𝑁) ∥ 0)
3331, 32syl 14 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∥ 0)
3433a1d 22 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
3534adantr 276 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
36 breq2 4066 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑀𝐾𝑀 ∥ 0))
37 breq2 4066 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑁𝐾𝑁 ∥ 0))
3836, 37anbi12d 473 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀𝐾𝑁𝐾) ↔ (𝑀 ∥ 0 ∧ 𝑁 ∥ 0)))
39 breq2 4066 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ 0))
4038, 39imbi12d 234 . . . . . . . . . . . . . . 15 (𝐾 = 0 → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4140adantl 277 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4235, 41mpbird 167 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4342adantrl 478 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4443adantllr 481 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4544adantlrr 483 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4645anassrs 400 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
47 nnabscl 11577 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
48 nnabscl 11577 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
49 nnabscl 11577 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (abs‘𝐾) ∈ ℕ)
50 lcmgcdlem 12565 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾))))
5150simprd 114 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5249, 51sylani 406 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5347, 48, 52syl2an 289 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5453expdimp 259 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
55 dvdsabsb 12287 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾𝑀 ∥ (abs‘𝐾)))
56 zabscl 11563 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℤ)
57 absdvdsb 12286 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5856, 57sylan2 286 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5955, 58bitrd 188 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
6059adantlr 477 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
61 dvdsabsb 12287 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾𝑁 ∥ (abs‘𝐾)))
62 absdvdsb 12286 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6356, 62sylan2 286 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6461, 63bitrd 188 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6564adantll 476 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6660, 65anbi12d 473 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) ↔ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))))
6766bicomd 141 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) ↔ (𝑀𝐾𝑁𝐾)))
68 lcmabs 12564 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
6968breq1d 4072 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7069adantr 276 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
71 dvdsabsb 12287 . . . . . . . . . . . . . . . . 17 (((𝑀 lcm 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7231, 71sylan 283 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7370, 72bitr4d 191 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾))
7467, 73imbi12d 234 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7574adantrr 479 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7675adantllr 481 . . . . . . . . . . . 12 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7776adantlrr 483 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7854, 77mpbid 147 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7978anassrs 400 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 ≠ 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
80 zdceq 9490 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐾 = 0)
815, 80mpan2 425 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → DECID 𝐾 = 0)
82 exmiddc 840 . . . . . . . . . . . 12 (DECID 𝐾 = 0 → (𝐾 = 0 ∨ ¬ 𝐾 = 0))
8381, 82syl 14 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 = 0 ∨ ¬ 𝐾 = 0))
84 df-ne 2381 . . . . . . . . . . . 12 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
8584orbi2i 766 . . . . . . . . . . 11 ((𝐾 = 0 ∨ 𝐾 ≠ 0) ↔ (𝐾 = 0 ∨ ¬ 𝐾 = 0))
8683, 85sylibr 134 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 = 0 ∨ 𝐾 ≠ 0))
8786adantl 277 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) → (𝐾 = 0 ∨ 𝐾 ≠ 0))
8846, 79, 87mpjaodan 802 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
8988ex 115 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
9089an4s 590 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
9129, 90sylan2br 288 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
9291impancom 260 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
93923impa 1199 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
94933comr 1216 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
95 lcmmndc 12550 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
96 exmiddc 840 . . . 4 (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
9795, 96syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
98973adant1 1020 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0)))
9928, 94, 98mpjaod 722 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838  w3a 983   = wceq 1375  wcel 2180  wne 2380   class class class wbr 4062  cfv 5294  (class class class)co 5974  0cc0 7967   · cmul 7972  cn 9078  cz 9414  abscabs 11474  cdvds 12264   gcd cgcd 12440   lcm clcm 12548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441  df-lcm 12549
This theorem is referenced by:  lcmdvdsb  12572
  Copyright terms: Public domain W3C validator