ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmdvds GIF version

Theorem lcmdvds 12078
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 19 . . . . . . 7 (0 โˆฅ ๐พ โ†’ 0 โˆฅ ๐พ)
2 breq1 4006 . . . . . . . . 9 (๐‘€ = 0 โ†’ (๐‘€ โˆฅ ๐พ โ†” 0 โˆฅ ๐พ))
32adantl 277 . . . . . . . 8 ((๐‘ โˆˆ โ„ค โˆง ๐‘€ = 0) โ†’ (๐‘€ โˆฅ ๐พ โ†” 0 โˆฅ ๐พ))
4 oveq1 5881 . . . . . . . . . 10 (๐‘€ = 0 โ†’ (๐‘€ lcm ๐‘) = (0 lcm ๐‘))
5 0z 9263 . . . . . . . . . . . 12 0 โˆˆ โ„ค
6 lcmcom 12063 . . . . . . . . . . . 12 ((0 โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (0 lcm ๐‘) = (๐‘ lcm 0))
75, 6mpan 424 . . . . . . . . . . 11 (๐‘ โˆˆ โ„ค โ†’ (0 lcm ๐‘) = (๐‘ lcm 0))
8 lcm0val 12064 . . . . . . . . . . 11 (๐‘ โˆˆ โ„ค โ†’ (๐‘ lcm 0) = 0)
97, 8eqtrd 2210 . . . . . . . . . 10 (๐‘ โˆˆ โ„ค โ†’ (0 lcm ๐‘) = 0)
104, 9sylan9eqr 2232 . . . . . . . . 9 ((๐‘ โˆˆ โ„ค โˆง ๐‘€ = 0) โ†’ (๐‘€ lcm ๐‘) = 0)
1110breq1d 4013 . . . . . . . 8 ((๐‘ โˆˆ โ„ค โˆง ๐‘€ = 0) โ†’ ((๐‘€ lcm ๐‘) โˆฅ ๐พ โ†” 0 โˆฅ ๐พ))
123, 11imbi12d 234 . . . . . . 7 ((๐‘ โˆˆ โ„ค โˆง ๐‘€ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ) โ†” (0 โˆฅ ๐พ โ†’ 0 โˆฅ ๐พ)))
131, 12mpbiri 168 . . . . . 6 ((๐‘ โˆˆ โ„ค โˆง ๐‘€ = 0) โ†’ (๐‘€ โˆฅ ๐พ โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
14133ad2antl3 1161 . . . . 5 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘€ = 0) โ†’ (๐‘€ โˆฅ ๐พ โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
1514adantrd 279 . . . 4 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘€ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
1615ex 115 . . 3 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ = 0 โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
17 breq1 4006 . . . . . . . . 9 (๐‘ = 0 โ†’ (๐‘ โˆฅ ๐พ โ†” 0 โˆฅ ๐พ))
1817adantl 277 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ = 0) โ†’ (๐‘ โˆฅ ๐พ โ†” 0 โˆฅ ๐พ))
19 oveq2 5882 . . . . . . . . . 10 (๐‘ = 0 โ†’ (๐‘€ lcm ๐‘) = (๐‘€ lcm 0))
20 lcm0val 12064 . . . . . . . . . 10 (๐‘€ โˆˆ โ„ค โ†’ (๐‘€ lcm 0) = 0)
2119, 20sylan9eqr 2232 . . . . . . . . 9 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ = 0) โ†’ (๐‘€ lcm ๐‘) = 0)
2221breq1d 4013 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ = 0) โ†’ ((๐‘€ lcm ๐‘) โˆฅ ๐พ โ†” 0 โˆฅ ๐พ))
2318, 22imbi12d 234 . . . . . . 7 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ = 0) โ†’ ((๐‘ โˆฅ ๐พ โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ) โ†” (0 โˆฅ ๐พ โ†’ 0 โˆฅ ๐พ)))
241, 23mpbiri 168 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ = 0) โ†’ (๐‘ โˆฅ ๐พ โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
25243ad2antl2 1160 . . . . 5 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘ = 0) โ†’ (๐‘ โˆฅ ๐พ โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
2625adantld 278 . . . 4 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
2726ex 115 . . 3 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ = 0 โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
2816, 27jaod 717 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘€ = 0 โˆจ ๐‘ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
29 neanior 2434 . . . . . 6 ((๐‘€ โ‰  0 โˆง ๐‘ โ‰  0) โ†” ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0))
30 lcmcl 12071 . . . . . . . . . . . . . . . . . 18 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ lcm ๐‘) โˆˆ โ„•0)
3130nn0zd 9372 . . . . . . . . . . . . . . . . 17 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ lcm ๐‘) โˆˆ โ„ค)
32 dvds0 11812 . . . . . . . . . . . . . . . . 17 ((๐‘€ lcm ๐‘) โˆˆ โ„ค โ†’ (๐‘€ lcm ๐‘) โˆฅ 0)
3331, 32syl 14 . . . . . . . . . . . . . . . 16 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ lcm ๐‘) โˆฅ 0)
3433a1d 22 . . . . . . . . . . . . . . 15 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘€ โˆฅ 0 โˆง ๐‘ โˆฅ 0) โ†’ (๐‘€ lcm ๐‘) โˆฅ 0))
3534adantr 276 . . . . . . . . . . . . . 14 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ = 0) โ†’ ((๐‘€ โˆฅ 0 โˆง ๐‘ โˆฅ 0) โ†’ (๐‘€ lcm ๐‘) โˆฅ 0))
36 breq2 4007 . . . . . . . . . . . . . . . . 17 (๐พ = 0 โ†’ (๐‘€ โˆฅ ๐พ โ†” ๐‘€ โˆฅ 0))
37 breq2 4007 . . . . . . . . . . . . . . . . 17 (๐พ = 0 โ†’ (๐‘ โˆฅ ๐พ โ†” ๐‘ โˆฅ 0))
3836, 37anbi12d 473 . . . . . . . . . . . . . . . 16 (๐พ = 0 โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†” (๐‘€ โˆฅ 0 โˆง ๐‘ โˆฅ 0)))
39 breq2 4007 . . . . . . . . . . . . . . . 16 (๐พ = 0 โ†’ ((๐‘€ lcm ๐‘) โˆฅ ๐พ โ†” (๐‘€ lcm ๐‘) โˆฅ 0))
4038, 39imbi12d 234 . . . . . . . . . . . . . . 15 (๐พ = 0 โ†’ (((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ) โ†” ((๐‘€ โˆฅ 0 โˆง ๐‘ โˆฅ 0) โ†’ (๐‘€ lcm ๐‘) โˆฅ 0)))
4140adantl 277 . . . . . . . . . . . . . 14 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ = 0) โ†’ (((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ) โ†” ((๐‘€ โˆฅ 0 โˆง ๐‘ โˆฅ 0) โ†’ (๐‘€ lcm ๐‘) โˆฅ 0)))
4235, 41mpbird 167 . . . . . . . . . . . . 13 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
4342adantrl 478 . . . . . . . . . . . 12 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ = 0)) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
4443adantllr 481 . . . . . . . . . . 11 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ = 0)) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
4544adantlrr 483 . . . . . . . . . 10 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ = 0)) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
4645anassrs 400 . . . . . . . . 9 (((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง ๐พ โˆˆ โ„ค) โˆง ๐พ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
47 nnabscl 11108 . . . . . . . . . . . . 13 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โ†’ (absโ€˜๐‘€) โˆˆ โ„•)
48 nnabscl 11108 . . . . . . . . . . . . 13 ((๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0) โ†’ (absโ€˜๐‘) โˆˆ โ„•)
49 nnabscl 11108 . . . . . . . . . . . . . 14 ((๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0) โ†’ (absโ€˜๐พ) โˆˆ โ„•)
50 lcmgcdlem 12076 . . . . . . . . . . . . . . 15 (((absโ€˜๐‘€) โˆˆ โ„• โˆง (absโ€˜๐‘) โˆˆ โ„•) โ†’ ((((absโ€˜๐‘€) lcm (absโ€˜๐‘)) ยท ((absโ€˜๐‘€) gcd (absโ€˜๐‘))) = (absโ€˜((absโ€˜๐‘€) ยท (absโ€˜๐‘))) โˆง (((absโ€˜๐พ) โˆˆ โ„• โˆง ((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ))) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ))))
5150simprd 114 . . . . . . . . . . . . . 14 (((absโ€˜๐‘€) โˆˆ โ„• โˆง (absโ€˜๐‘) โˆˆ โ„•) โ†’ (((absโ€˜๐พ) โˆˆ โ„• โˆง ((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ))) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)))
5249, 51sylani 406 . . . . . . . . . . . . 13 (((absโ€˜๐‘€) โˆˆ โ„• โˆง (absโ€˜๐‘) โˆˆ โ„•) โ†’ (((๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0) โˆง ((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ))) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)))
5347, 48, 52syl2an 289 . . . . . . . . . . . 12 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โ†’ (((๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0) โˆง ((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ))) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)))
5453expdimp 259 . . . . . . . . . . 11 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ (((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)))
55 dvdsabsb 11816 . . . . . . . . . . . . . . . . . . 19 ((๐‘€ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐พ โ†” ๐‘€ โˆฅ (absโ€˜๐พ)))
56 zabscl 11094 . . . . . . . . . . . . . . . . . . . 20 (๐พ โˆˆ โ„ค โ†’ (absโ€˜๐พ) โˆˆ โ„ค)
57 absdvdsb 11815 . . . . . . . . . . . . . . . . . . . 20 ((๐‘€ โˆˆ โ„ค โˆง (absโ€˜๐พ) โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ (absโ€˜๐พ) โ†” (absโ€˜๐‘€) โˆฅ (absโ€˜๐พ)))
5856, 57sylan2 286 . . . . . . . . . . . . . . . . . . 19 ((๐‘€ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ (absโ€˜๐พ) โ†” (absโ€˜๐‘€) โˆฅ (absโ€˜๐พ)))
5955, 58bitrd 188 . . . . . . . . . . . . . . . . . 18 ((๐‘€ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐พ โ†” (absโ€˜๐‘€) โˆฅ (absโ€˜๐พ)))
6059adantlr 477 . . . . . . . . . . . . . . . . 17 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐พ โ†” (absโ€˜๐‘€) โˆฅ (absโ€˜๐พ)))
61 dvdsabsb 11816 . . . . . . . . . . . . . . . . . . 19 ((๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ โˆฅ ๐พ โ†” ๐‘ โˆฅ (absโ€˜๐พ)))
62 absdvdsb 11815 . . . . . . . . . . . . . . . . . . . 20 ((๐‘ โˆˆ โ„ค โˆง (absโ€˜๐พ) โˆˆ โ„ค) โ†’ (๐‘ โˆฅ (absโ€˜๐พ) โ†” (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)))
6356, 62sylan2 286 . . . . . . . . . . . . . . . . . . 19 ((๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ โˆฅ (absโ€˜๐พ) โ†” (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)))
6461, 63bitrd 188 . . . . . . . . . . . . . . . . . 18 ((๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ โˆฅ ๐พ โ†” (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)))
6564adantll 476 . . . . . . . . . . . . . . . . 17 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ โˆฅ ๐พ โ†” (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)))
6660, 65anbi12d 473 . . . . . . . . . . . . . . . 16 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†” ((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ))))
6766bicomd 141 . . . . . . . . . . . . . . 15 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ (((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)) โ†” (๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ)))
68 lcmabs 12075 . . . . . . . . . . . . . . . . . 18 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) = (๐‘€ lcm ๐‘))
6968breq1d 4013 . . . . . . . . . . . . . . . . 17 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ) โ†” (๐‘€ lcm ๐‘) โˆฅ (absโ€˜๐พ)))
7069adantr 276 . . . . . . . . . . . . . . . 16 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ (((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ) โ†” (๐‘€ lcm ๐‘) โˆฅ (absโ€˜๐พ)))
71 dvdsabsb 11816 . . . . . . . . . . . . . . . . 17 (((๐‘€ lcm ๐‘) โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘€ lcm ๐‘) โˆฅ ๐พ โ†” (๐‘€ lcm ๐‘) โˆฅ (absโ€˜๐พ)))
7231, 71sylan 283 . . . . . . . . . . . . . . . 16 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘€ lcm ๐‘) โˆฅ ๐พ โ†” (๐‘€ lcm ๐‘) โˆฅ (absโ€˜๐พ)))
7370, 72bitr4d 191 . . . . . . . . . . . . . . 15 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ (((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ) โ†” (๐‘€ lcm ๐‘) โˆฅ ๐พ))
7467, 73imbi12d 234 . . . . . . . . . . . . . 14 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ ((((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)) โ†” ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
7574adantrr 479 . . . . . . . . . . . . 13 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)) โ†” ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
7675adantllr 481 . . . . . . . . . . . 12 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)) โ†” ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
7776adantlrr 483 . . . . . . . . . . 11 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((((absโ€˜๐‘€) โˆฅ (absโ€˜๐พ) โˆง (absโ€˜๐‘) โˆฅ (absโ€˜๐พ)) โ†’ ((absโ€˜๐‘€) lcm (absโ€˜๐‘)) โˆฅ (absโ€˜๐พ)) โ†” ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
7854, 77mpbid 147 . . . . . . . . . 10 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
7978anassrs 400 . . . . . . . . 9 (((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง ๐พ โˆˆ โ„ค) โˆง ๐พ โ‰  0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
80 zdceq 9327 . . . . . . . . . . . . 13 ((๐พ โˆˆ โ„ค โˆง 0 โˆˆ โ„ค) โ†’ DECID ๐พ = 0)
815, 80mpan2 425 . . . . . . . . . . . 12 (๐พ โˆˆ โ„ค โ†’ DECID ๐พ = 0)
82 exmiddc 836 . . . . . . . . . . . 12 (DECID ๐พ = 0 โ†’ (๐พ = 0 โˆจ ยฌ ๐พ = 0))
8381, 82syl 14 . . . . . . . . . . 11 (๐พ โˆˆ โ„ค โ†’ (๐พ = 0 โˆจ ยฌ ๐พ = 0))
84 df-ne 2348 . . . . . . . . . . . 12 (๐พ โ‰  0 โ†” ยฌ ๐พ = 0)
8584orbi2i 762 . . . . . . . . . . 11 ((๐พ = 0 โˆจ ๐พ โ‰  0) โ†” (๐พ = 0 โˆจ ยฌ ๐พ = 0))
8683, 85sylibr 134 . . . . . . . . . 10 (๐พ โˆˆ โ„ค โ†’ (๐พ = 0 โˆจ ๐พ โ‰  0))
8786adantl 277 . . . . . . . . 9 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง ๐พ โˆˆ โ„ค) โ†’ (๐พ = 0 โˆจ ๐พ โ‰  0))
8846, 79, 87mpjaodan 798 . . . . . . . 8 ((((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
8988ex 115 . . . . . . 7 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โ‰  0)) โ†’ (๐พ โˆˆ โ„ค โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
9089an4s 588 . . . . . 6 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘€ โ‰  0 โˆง ๐‘ โ‰  0)) โ†’ (๐พ โˆˆ โ„ค โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
9129, 90sylan2br 288 . . . . 5 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0)) โ†’ (๐พ โˆˆ โ„ค โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
9291impancom 260 . . . 4 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐พ โˆˆ โ„ค) โ†’ (ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
93923impa 1194 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
94933comr 1211 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ)))
95 lcmmndc 12061 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ DECID (๐‘€ = 0 โˆจ ๐‘ = 0))
96 exmiddc 836 . . . 4 (DECID (๐‘€ = 0 โˆจ ๐‘ = 0) โ†’ ((๐‘€ = 0 โˆจ ๐‘ = 0) โˆจ ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0)))
9795, 96syl 14 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘€ = 0 โˆจ ๐‘ = 0) โˆจ ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0)))
98973adant1 1015 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘€ = 0 โˆจ ๐‘ = 0) โˆจ ยฌ (๐‘€ = 0 โˆจ ๐‘ = 0)))
9928, 94, 98mpjaod 718 1 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘€ โˆฅ ๐พ โˆง ๐‘ โˆฅ ๐พ) โ†’ (๐‘€ lcm ๐‘) โˆฅ ๐พ))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 708  DECID wdc 834   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347   class class class wbr 4003  โ€˜cfv 5216  (class class class)co 5874  0cc0 7810   ยท cmul 7815  โ„•cn 8918  โ„คcz 9252  abscabs 11005   โˆฅ cdvds 11793   gcd cgcd 11942   lcm clcm 12059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-sup 6982  df-inf 6983  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-fz 10008  df-fzo 10142  df-fl 10269  df-mod 10322  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-dvds 11794  df-gcd 11943  df-lcm 12060
This theorem is referenced by:  lcmdvdsb  12083
  Copyright terms: Public domain W3C validator