ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch2 GIF version

Theorem prarloclemarch2 6957
Description: Like prarloclemarch 6956 but the integer must be at least two, and there is also 𝐵 added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7041. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prarloclemarch2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem prarloclemarch2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prarloclemarch 6956 . . 3 ((𝐴Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
213adant2 962 . 2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
3 pinn 6847 . . . . . . . 8 (𝑧N𝑧 ∈ ω)
4 1pi 6853 . . . . . . . . . . . 12 1𝑜N
54elexi 2631 . . . . . . . . . . 11 1𝑜 ∈ V
65sucid 4235 . . . . . . . . . 10 1𝑜 ∈ suc 1𝑜
7 df-2o 6164 . . . . . . . . . 10 2𝑜 = suc 1𝑜
86, 7eleqtrri 2163 . . . . . . . . 9 1𝑜 ∈ 2𝑜
9 2onn 6260 . . . . . . . . . . 11 2𝑜 ∈ ω
10 nnaword2 6253 . . . . . . . . . . 11 ((2𝑜 ∈ ω ∧ 𝑧 ∈ ω) → 2𝑜 ⊆ (𝑧 +𝑜 2𝑜))
119, 10mpan 415 . . . . . . . . . 10 (𝑧 ∈ ω → 2𝑜 ⊆ (𝑧 +𝑜 2𝑜))
1211sseld 3022 . . . . . . . . 9 (𝑧 ∈ ω → (1𝑜 ∈ 2𝑜 → 1𝑜 ∈ (𝑧 +𝑜 2𝑜)))
138, 12mpi 15 . . . . . . . 8 (𝑧 ∈ ω → 1𝑜 ∈ (𝑧 +𝑜 2𝑜))
143, 13syl 14 . . . . . . 7 (𝑧N → 1𝑜 ∈ (𝑧 +𝑜 2𝑜))
15 o1p1e2 6211 . . . . . . . . 9 (1𝑜 +𝑜 1𝑜) = 2𝑜
16 addpiord 6854 . . . . . . . . . . 11 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜))
174, 4, 16mp2an 417 . . . . . . . . . 10 (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜)
18 addclpi 6865 . . . . . . . . . . 11 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) ∈ N)
194, 4, 18mp2an 417 . . . . . . . . . 10 (1𝑜 +N 1𝑜) ∈ N
2017, 19eqeltrri 2161 . . . . . . . . 9 (1𝑜 +𝑜 1𝑜) ∈ N
2115, 20eqeltrri 2161 . . . . . . . 8 2𝑜N
22 addpiord 6854 . . . . . . . 8 ((𝑧N ∧ 2𝑜N) → (𝑧 +N 2𝑜) = (𝑧 +𝑜 2𝑜))
2321, 22mpan2 416 . . . . . . 7 (𝑧N → (𝑧 +N 2𝑜) = (𝑧 +𝑜 2𝑜))
2414, 23eleqtrrd 2167 . . . . . 6 (𝑧N → 1𝑜 ∈ (𝑧 +N 2𝑜))
25 addclpi 6865 . . . . . . . 8 ((𝑧N ∧ 2𝑜N) → (𝑧 +N 2𝑜) ∈ N)
2621, 25mpan2 416 . . . . . . 7 (𝑧N → (𝑧 +N 2𝑜) ∈ N)
27 ltpiord 6857 . . . . . . . 8 ((1𝑜N ∧ (𝑧 +N 2𝑜) ∈ N) → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
284, 27mpan 415 . . . . . . 7 ((𝑧 +N 2𝑜) ∈ N → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
2926, 28syl 14 . . . . . 6 (𝑧N → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
3024, 29mpbird 165 . . . . 5 (𝑧N → 1𝑜 <N (𝑧 +N 2𝑜))
3130adantl 271 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 1𝑜 <N (𝑧 +N 2𝑜))
3231adantrr 463 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 1𝑜 <N (𝑧 +N 2𝑜))
33 nna0 6217 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +𝑜 ∅) = 𝑧)
34 0lt1o 6186 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ 1𝑜
35 1on 6170 . . . . . . . . . . . . . . . . . . . . . 22 1𝑜 ∈ On
3635onsuci 4323 . . . . . . . . . . . . . . . . . . . . 21 suc 1𝑜 ∈ On
37 ontr1 4207 . . . . . . . . . . . . . . . . . . . . 21 (suc 1𝑜 ∈ On → ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ suc 1𝑜) → ∅ ∈ suc 1𝑜))
3836, 37ax-mp 7 . . . . . . . . . . . . . . . . . . . 20 ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ suc 1𝑜) → ∅ ∈ suc 1𝑜)
3934, 6, 38mp2an 417 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ suc 1𝑜
4039, 7eleqtrri 2163 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 2𝑜
41 nnaordi 6247 . . . . . . . . . . . . . . . . . . 19 ((2𝑜 ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈ 2𝑜 → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜)))
429, 41mpan 415 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → (∅ ∈ 2𝑜 → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜)))
4340, 42mpi 15 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜))
4433, 43eqeltrrd 2165 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +𝑜 2𝑜))
453, 44syl 14 . . . . . . . . . . . . . . 15 (𝑧N𝑧 ∈ (𝑧 +𝑜 2𝑜))
4645, 23eleqtrrd 2167 . . . . . . . . . . . . . 14 (𝑧N𝑧 ∈ (𝑧 +N 2𝑜))
47 ltpiord 6857 . . . . . . . . . . . . . . 15 ((𝑧N ∧ (𝑧 +N 2𝑜) ∈ N) → (𝑧 <N (𝑧 +N 2𝑜) ↔ 𝑧 ∈ (𝑧 +N 2𝑜)))
4826, 47mpdan 412 . . . . . . . . . . . . . 14 (𝑧N → (𝑧 <N (𝑧 +N 2𝑜) ↔ 𝑧 ∈ (𝑧 +N 2𝑜)))
4946, 48mpbird 165 . . . . . . . . . . . . 13 (𝑧N𝑧 <N (𝑧 +N 2𝑜))
50 mulidpi 6856 . . . . . . . . . . . . 13 (𝑧N → (𝑧 ·N 1𝑜) = 𝑧)
51 mulcompig 6869 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N) → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
524, 51mpan2 416 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
5326, 52syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
54 mulidpi 6856 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (𝑧 +N 2𝑜))
5526, 54syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (𝑧 +N 2𝑜))
5653, 55eqtr3d 2122 . . . . . . . . . . . . 13 (𝑧N → (1𝑜 ·N (𝑧 +N 2𝑜)) = (𝑧 +N 2𝑜))
5749, 50, 563brtr4d 3867 . . . . . . . . . . . 12 (𝑧N → (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜)))
58 ordpipqqs 6912 . . . . . . . . . . . . . . 15 (((𝑧N ∧ 1𝑜N) ∧ ((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N)) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
594, 58mpanl2 426 . . . . . . . . . . . . . 14 ((𝑧N ∧ ((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N)) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
604, 59mpanr2 429 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑧 +N 2𝑜) ∈ N) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
6126, 60mpdan 412 . . . . . . . . . . . 12 (𝑧N → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
6257, 61mpbird 165 . . . . . . . . . . 11 (𝑧N → [⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
6362adantl 271 . . . . . . . . . 10 ((𝐶Q𝑧N) → [⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
64 opelxpi 4459 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N) → ⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N))
654, 64mpan2 416 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N))
66 enqex 6898 . . . . . . . . . . . . . . . 16 ~Q ∈ V
6766ecelqsi 6326 . . . . . . . . . . . . . . 15 (⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N) → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
6826, 65, 673syl 17 . . . . . . . . . . . . . 14 (𝑧N → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
69 df-nqqs 6886 . . . . . . . . . . . . . 14 Q = ((N × N) / ~Q )
7068, 69syl6eleqr 2181 . . . . . . . . . . . . 13 (𝑧N → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ)
71 opelxpi 4459 . . . . . . . . . . . . . . . . 17 ((𝑧N ∧ 1𝑜N) → ⟨𝑧, 1𝑜⟩ ∈ (N × N))
724, 71mpan2 416 . . . . . . . . . . . . . . . 16 (𝑧N → ⟨𝑧, 1𝑜⟩ ∈ (N × N))
7366ecelqsi 6326 . . . . . . . . . . . . . . . 16 (⟨𝑧, 1𝑜⟩ ∈ (N × N) → [⟨𝑧, 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
7472, 73syl 14 . . . . . . . . . . . . . . 15 (𝑧N → [⟨𝑧, 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
7574, 69syl6eleqr 2181 . . . . . . . . . . . . . 14 (𝑧N → [⟨𝑧, 1𝑜⟩] ~QQ)
76 ltmnqg 6939 . . . . . . . . . . . . . 14 (([⟨𝑧, 1𝑜⟩] ~QQ ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
7775, 76syl3an1 1207 . . . . . . . . . . . . 13 ((𝑧N ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
7870, 77syl3an2 1208 . . . . . . . . . . . 12 ((𝑧N𝑧N𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
79783anidm12 1231 . . . . . . . . . . 11 ((𝑧N𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
8079ancoms 264 . . . . . . . . . 10 ((𝐶Q𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
8163, 80mpbid 145 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ))
82 mulcomnqg 6921 . . . . . . . . . 10 ((𝐶Q ∧ [⟨𝑧, 1𝑜⟩] ~QQ) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) = ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
8375, 82sylan2 280 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) = ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
84 mulcomnqg 6921 . . . . . . . . . 10 ((𝐶Q ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ) → (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8570, 84sylan2 280 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8681, 83, 853brtr3d 3866 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
87863ad2antl3 1107 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8887adantrr 463 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
89 ltsonq 6936 . . . . . . . . . 10 <Q Or Q
90 ltrelnq 6903 . . . . . . . . . 10 <Q ⊆ (Q × Q)
9189, 90sotri 4814 . . . . . . . . 9 ((𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) ∧ ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
9291ex 113 . . . . . . . 8 (𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9392adantl 271 . . . . . . 7 ((𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶)) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9493adantl 271 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9588, 94mpd 13 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
96 mulclnq 6914 . . . . . . . . . 10 (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
9770, 96sylan 277 . . . . . . . . 9 ((𝑧N𝐶Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
9897ancoms 264 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
99983ad2antl3 1107 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
100 simpl2 947 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝐵Q)
101 ltaddnq 6945 . . . . . . 7 ((([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10299, 100, 101syl2anc 403 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
103102adantrr 463 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10489, 90sotri 4814 . . . . 5 ((𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∧ ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵)) → 𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10595, 103, 104syl2anc 403 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
106 addcomnqg 6919 . . . . . . 7 ((([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
10799, 100, 106syl2anc 403 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
108107breq2d 3849 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
109108adantrr 463 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → (𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
110105, 109mpbid 145 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
111 simpr 108 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝑧N)
112 breq2 3841 . . . . . . . 8 (𝑥 = (𝑧 +N 2𝑜) → (1𝑜 <N 𝑥 ↔ 1𝑜 <N (𝑧 +N 2𝑜)))
113 opeq1 3617 . . . . . . . . . . . 12 (𝑥 = (𝑧 +N 2𝑜) → ⟨𝑥, 1𝑜⟩ = ⟨(𝑧 +N 2𝑜), 1𝑜⟩)
114113eceq1d 6308 . . . . . . . . . . 11 (𝑥 = (𝑧 +N 2𝑜) → [⟨𝑥, 1𝑜⟩] ~Q = [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
115114oveq1d 5649 . . . . . . . . . 10 (𝑥 = (𝑧 +N 2𝑜) → ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
116115oveq2d 5650 . . . . . . . . 9 (𝑥 = (𝑧 +N 2𝑜) → (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
117116breq2d 3849 . . . . . . . 8 (𝑥 = (𝑧 +N 2𝑜) → (𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
118112, 117anbi12d 457 . . . . . . 7 (𝑥 = (𝑧 +N 2𝑜) → ((1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))) ↔ (1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))))
119118rspcev 2722 . . . . . 6 (((𝑧 +N 2𝑜) ∈ N ∧ (1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
120119ex 113 . . . . 5 ((𝑧 +N 2𝑜) ∈ N → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
121111, 26, 1203syl 17 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
122121adantrr 463 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
12332, 110, 122mp2and 424 . 2 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
1242, 123rexlimddv 2493 1 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438  wrex 2360  wss 2997  c0 3284  cop 3444   class class class wbr 3837  Oncon0 4181  suc csuc 4183  ωcom 4395   × cxp 4426  (class class class)co 5634  1𝑜c1o 6156  2𝑜c2o 6157   +𝑜 coa 6160  [cec 6270   / cqs 6271  Ncnpi 6810   +N cpli 6811   ·N cmi 6812   <N clti 6813   ~Q ceq 6817  Qcnq 6818   +Q cplq 6820   ·Q cmq 6821   <Q cltq 6823
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-2o 6164  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-pli 6843  df-mi 6844  df-lti 6845  df-plpq 6882  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-plqqs 6887  df-mqqs 6888  df-1nqqs 6889  df-rq 6890  df-ltnqqs 6891
This theorem is referenced by:  prarloc  7041
  Copyright terms: Public domain W3C validator