ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch2 GIF version

Theorem prarloclemarch2 7318
Description: Like prarloclemarch 7317 but the integer must be at least two, and there is also 𝐵 added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7402. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prarloclemarch2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem prarloclemarch2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prarloclemarch 7317 . . 3 ((𝐴Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))
213adant2 1001 . 2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))
3 pinn 7208 . . . . . . . 8 (𝑧N𝑧 ∈ ω)
4 1pi 7214 . . . . . . . . . . . 12 1oN
54elexi 2721 . . . . . . . . . . 11 1o ∈ V
65sucid 4372 . . . . . . . . . 10 1o ∈ suc 1o
7 df-2o 6354 . . . . . . . . . 10 2o = suc 1o
86, 7eleqtrri 2230 . . . . . . . . 9 1o ∈ 2o
9 2onn 6457 . . . . . . . . . . 11 2o ∈ ω
10 nnaword2 6450 . . . . . . . . . . 11 ((2o ∈ ω ∧ 𝑧 ∈ ω) → 2o ⊆ (𝑧 +o 2o))
119, 10mpan 421 . . . . . . . . . 10 (𝑧 ∈ ω → 2o ⊆ (𝑧 +o 2o))
1211sseld 3123 . . . . . . . . 9 (𝑧 ∈ ω → (1o ∈ 2o → 1o ∈ (𝑧 +o 2o)))
138, 12mpi 15 . . . . . . . 8 (𝑧 ∈ ω → 1o ∈ (𝑧 +o 2o))
143, 13syl 14 . . . . . . 7 (𝑧N → 1o ∈ (𝑧 +o 2o))
15 o1p1e2 6404 . . . . . . . . 9 (1o +o 1o) = 2o
16 addpiord 7215 . . . . . . . . . . 11 ((1oN ∧ 1oN) → (1o +N 1o) = (1o +o 1o))
174, 4, 16mp2an 423 . . . . . . . . . 10 (1o +N 1o) = (1o +o 1o)
18 addclpi 7226 . . . . . . . . . . 11 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
194, 4, 18mp2an 423 . . . . . . . . . 10 (1o +N 1o) ∈ N
2017, 19eqeltrri 2228 . . . . . . . . 9 (1o +o 1o) ∈ N
2115, 20eqeltrri 2228 . . . . . . . 8 2oN
22 addpiord 7215 . . . . . . . 8 ((𝑧N ∧ 2oN) → (𝑧 +N 2o) = (𝑧 +o 2o))
2321, 22mpan2 422 . . . . . . 7 (𝑧N → (𝑧 +N 2o) = (𝑧 +o 2o))
2414, 23eleqtrrd 2234 . . . . . 6 (𝑧N → 1o ∈ (𝑧 +N 2o))
25 addclpi 7226 . . . . . . . 8 ((𝑧N ∧ 2oN) → (𝑧 +N 2o) ∈ N)
2621, 25mpan2 422 . . . . . . 7 (𝑧N → (𝑧 +N 2o) ∈ N)
27 ltpiord 7218 . . . . . . . 8 ((1oN ∧ (𝑧 +N 2o) ∈ N) → (1o <N (𝑧 +N 2o) ↔ 1o ∈ (𝑧 +N 2o)))
284, 27mpan 421 . . . . . . 7 ((𝑧 +N 2o) ∈ N → (1o <N (𝑧 +N 2o) ↔ 1o ∈ (𝑧 +N 2o)))
2926, 28syl 14 . . . . . 6 (𝑧N → (1o <N (𝑧 +N 2o) ↔ 1o ∈ (𝑧 +N 2o)))
3024, 29mpbird 166 . . . . 5 (𝑧N → 1o <N (𝑧 +N 2o))
3130adantl 275 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 1o <N (𝑧 +N 2o))
3231adantrr 471 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → 1o <N (𝑧 +N 2o))
33 nna0 6410 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +o ∅) = 𝑧)
34 0lt1o 6377 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ 1o
35 1on 6360 . . . . . . . . . . . . . . . . . . . . . 22 1o ∈ On
3635onsuci 4469 . . . . . . . . . . . . . . . . . . . . 21 suc 1o ∈ On
37 ontr1 4344 . . . . . . . . . . . . . . . . . . . . 21 (suc 1o ∈ On → ((∅ ∈ 1o ∧ 1o ∈ suc 1o) → ∅ ∈ suc 1o))
3836, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((∅ ∈ 1o ∧ 1o ∈ suc 1o) → ∅ ∈ suc 1o)
3934, 6, 38mp2an 423 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ suc 1o
4039, 7eleqtrri 2230 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 2o
41 nnaordi 6444 . . . . . . . . . . . . . . . . . . 19 ((2o ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈ 2o → (𝑧 +o ∅) ∈ (𝑧 +o 2o)))
429, 41mpan 421 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → (∅ ∈ 2o → (𝑧 +o ∅) ∈ (𝑧 +o 2o)))
4340, 42mpi 15 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +o ∅) ∈ (𝑧 +o 2o))
4433, 43eqeltrrd 2232 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +o 2o))
453, 44syl 14 . . . . . . . . . . . . . . 15 (𝑧N𝑧 ∈ (𝑧 +o 2o))
4645, 23eleqtrrd 2234 . . . . . . . . . . . . . 14 (𝑧N𝑧 ∈ (𝑧 +N 2o))
47 ltpiord 7218 . . . . . . . . . . . . . . 15 ((𝑧N ∧ (𝑧 +N 2o) ∈ N) → (𝑧 <N (𝑧 +N 2o) ↔ 𝑧 ∈ (𝑧 +N 2o)))
4826, 47mpdan 418 . . . . . . . . . . . . . 14 (𝑧N → (𝑧 <N (𝑧 +N 2o) ↔ 𝑧 ∈ (𝑧 +N 2o)))
4946, 48mpbird 166 . . . . . . . . . . . . 13 (𝑧N𝑧 <N (𝑧 +N 2o))
50 mulidpi 7217 . . . . . . . . . . . . 13 (𝑧N → (𝑧 ·N 1o) = 𝑧)
51 mulcompig 7230 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2o) ∈ N ∧ 1oN) → ((𝑧 +N 2o) ·N 1o) = (1o ·N (𝑧 +N 2o)))
524, 51mpan2 422 . . . . . . . . . . . . . . 15 ((𝑧 +N 2o) ∈ N → ((𝑧 +N 2o) ·N 1o) = (1o ·N (𝑧 +N 2o)))
5326, 52syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2o) ·N 1o) = (1o ·N (𝑧 +N 2o)))
54 mulidpi 7217 . . . . . . . . . . . . . . 15 ((𝑧 +N 2o) ∈ N → ((𝑧 +N 2o) ·N 1o) = (𝑧 +N 2o))
5526, 54syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2o) ·N 1o) = (𝑧 +N 2o))
5653, 55eqtr3d 2189 . . . . . . . . . . . . 13 (𝑧N → (1o ·N (𝑧 +N 2o)) = (𝑧 +N 2o))
5749, 50, 563brtr4d 3992 . . . . . . . . . . . 12 (𝑧N → (𝑧 ·N 1o) <N (1o ·N (𝑧 +N 2o)))
58 ordpipqqs 7273 . . . . . . . . . . . . . . 15 (((𝑧N ∧ 1oN) ∧ ((𝑧 +N 2o) ∈ N ∧ 1oN)) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (1o ·N (𝑧 +N 2o))))
594, 58mpanl2 432 . . . . . . . . . . . . . 14 ((𝑧N ∧ ((𝑧 +N 2o) ∈ N ∧ 1oN)) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (1o ·N (𝑧 +N 2o))))
604, 59mpanr2 435 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑧 +N 2o) ∈ N) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (1o ·N (𝑧 +N 2o))))
6126, 60mpdan 418 . . . . . . . . . . . 12 (𝑧N → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (1o ·N (𝑧 +N 2o))))
6257, 61mpbird 166 . . . . . . . . . . 11 (𝑧N → [⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q )
6362adantl 275 . . . . . . . . . 10 ((𝐶Q𝑧N) → [⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q )
64 opelxpi 4611 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2o) ∈ N ∧ 1oN) → ⟨(𝑧 +N 2o), 1o⟩ ∈ (N × N))
654, 64mpan2 422 . . . . . . . . . . . . . . 15 ((𝑧 +N 2o) ∈ N → ⟨(𝑧 +N 2o), 1o⟩ ∈ (N × N))
66 enqex 7259 . . . . . . . . . . . . . . . 16 ~Q ∈ V
6766ecelqsi 6523 . . . . . . . . . . . . . . 15 (⟨(𝑧 +N 2o), 1o⟩ ∈ (N × N) → [⟨(𝑧 +N 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
6826, 65, 673syl 17 . . . . . . . . . . . . . 14 (𝑧N → [⟨(𝑧 +N 2o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
69 df-nqqs 7247 . . . . . . . . . . . . . 14 Q = ((N × N) / ~Q )
7068, 69eleqtrrdi 2248 . . . . . . . . . . . . 13 (𝑧N → [⟨(𝑧 +N 2o), 1o⟩] ~QQ)
71 opelxpi 4611 . . . . . . . . . . . . . . . . 17 ((𝑧N ∧ 1oN) → ⟨𝑧, 1o⟩ ∈ (N × N))
724, 71mpan2 422 . . . . . . . . . . . . . . . 16 (𝑧N → ⟨𝑧, 1o⟩ ∈ (N × N))
7366ecelqsi 6523 . . . . . . . . . . . . . . . 16 (⟨𝑧, 1o⟩ ∈ (N × N) → [⟨𝑧, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
7472, 73syl 14 . . . . . . . . . . . . . . 15 (𝑧N → [⟨𝑧, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
7574, 69eleqtrrdi 2248 . . . . . . . . . . . . . 14 (𝑧N → [⟨𝑧, 1o⟩] ~QQ)
76 ltmnqg 7300 . . . . . . . . . . . . . 14 (([⟨𝑧, 1o⟩] ~QQ ∧ [⟨(𝑧 +N 2o), 1o⟩] ~QQ𝐶Q) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q )))
7775, 76syl3an1 1250 . . . . . . . . . . . . 13 ((𝑧N ∧ [⟨(𝑧 +N 2o), 1o⟩] ~QQ𝐶Q) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q )))
7870, 77syl3an2 1251 . . . . . . . . . . . 12 ((𝑧N𝑧N𝐶Q) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q )))
79783anidm12 1274 . . . . . . . . . . 11 ((𝑧N𝐶Q) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q )))
8079ancoms 266 . . . . . . . . . 10 ((𝐶Q𝑧N) → ([⟨𝑧, 1o⟩] ~Q <Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q )))
8163, 80mpbid 146 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ))
82 mulcomnqg 7282 . . . . . . . . . 10 ((𝐶Q ∧ [⟨𝑧, 1o⟩] ~QQ) → (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) = ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))
8375, 82sylan2 284 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1o⟩] ~Q ) = ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))
84 mulcomnqg 7282 . . . . . . . . . 10 ((𝐶Q ∧ [⟨(𝑧 +N 2o), 1o⟩] ~QQ) → (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ) = ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
8570, 84sylan2 284 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨(𝑧 +N 2o), 1o⟩] ~Q ) = ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
8681, 83, 853brtr3d 3991 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
87863ad2antl3 1146 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
8887adantrr 471 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
89 ltsonq 7297 . . . . . . . . . 10 <Q Or Q
90 ltrelnq 7264 . . . . . . . . . 10 <Q ⊆ (Q × Q)
9189, 90sotri 4974 . . . . . . . . 9 ((𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) ∧ ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)) → 𝐴 <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
9291ex 114 . . . . . . . 8 (𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) → (([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))
9392adantl 275 . . . . . . 7 ((𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶)) → (([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))
9493adantl 275 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → (([⟨𝑧, 1o⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))
9588, 94mpd 13 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → 𝐴 <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
96 mulclnq 7275 . . . . . . . . . 10 (([⟨(𝑧 +N 2o), 1o⟩] ~QQ𝐶Q) → ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) ∈ Q)
9770, 96sylan 281 . . . . . . . . 9 ((𝑧N𝐶Q) → ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) ∈ Q)
9897ancoms 266 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) ∈ Q)
99983ad2antl3 1146 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) ∈ Q)
100 simpl2 986 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝐵Q)
101 ltaddnq 7306 . . . . . . 7 ((([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵))
10299, 100, 101syl2anc 409 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵))
103102adantrr 471 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵))
10489, 90sotri 4974 . . . . 5 ((𝐴 <Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) ∧ ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵)) → 𝐴 <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵))
10595, 103, 104syl2anc 409 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵))
106 addcomnqg 7280 . . . . . . 7 ((([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))
10799, 100, 106syl2anc 409 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))
108107breq2d 3973 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (𝐴 <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))))
109108adantrr 471 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → (𝐴 <Q (([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))))
110105, 109mpbid 146 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))
111 simpr 109 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝑧N)
112 breq2 3965 . . . . . . . 8 (𝑥 = (𝑧 +N 2o) → (1o <N 𝑥 ↔ 1o <N (𝑧 +N 2o)))
113 opeq1 3737 . . . . . . . . . . . 12 (𝑥 = (𝑧 +N 2o) → ⟨𝑥, 1o⟩ = ⟨(𝑧 +N 2o), 1o⟩)
114113eceq1d 6505 . . . . . . . . . . 11 (𝑥 = (𝑧 +N 2o) → [⟨𝑥, 1o⟩] ~Q = [⟨(𝑧 +N 2o), 1o⟩] ~Q )
115114oveq1d 5829 . . . . . . . . . 10 (𝑥 = (𝑧 +N 2o) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶) = ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))
116115oveq2d 5830 . . . . . . . . 9 (𝑥 = (𝑧 +N 2o) → (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶)) = (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))
117116breq2d 3973 . . . . . . . 8 (𝑥 = (𝑧 +N 2o) → (𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶)) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))))
118112, 117anbi12d 465 . . . . . . 7 (𝑥 = (𝑧 +N 2o) → ((1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶))) ↔ (1o <N (𝑧 +N 2o) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))))
119118rspcev 2813 . . . . . 6 (((𝑧 +N 2o) ∈ N ∧ (1o <N (𝑧 +N 2o) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶)))) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶))))
120119ex 114 . . . . 5 ((𝑧 +N 2o) ∈ N → ((1o <N (𝑧 +N 2o) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶)))))
121111, 26, 1203syl 17 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ((1o <N (𝑧 +N 2o) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶)))))
122121adantrr 471 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → ((1o <N (𝑧 +N 2o) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2o), 1o⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶)))))
12332, 110, 122mp2and 430 . 2 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1o⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶))))
1242, 123rexlimddv 2576 1 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1o <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 2125  wrex 2433  wss 3098  c0 3390  cop 3559   class class class wbr 3961  Oncon0 4318  suc csuc 4320  ωcom 4543   × cxp 4577  (class class class)co 5814  1oc1o 6346  2oc2o 6347   +o coa 6350  [cec 6467   / cqs 6468  Ncnpi 7171   +N cpli 7172   ·N cmi 7173   <N clti 7174   ~Q ceq 7178  Qcnq 7179   +Q cplq 7181   ·Q cmq 7182   <Q cltq 7184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-eprel 4244  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-1o 6353  df-2o 6354  df-oadd 6357  df-omul 6358  df-er 6469  df-ec 6471  df-qs 6475  df-ni 7203  df-pli 7204  df-mi 7205  df-lti 7206  df-plpq 7243  df-mpq 7244  df-enq 7246  df-nqqs 7247  df-plqqs 7248  df-mqqs 7249  df-1nqqs 7250  df-rq 7251  df-ltnqqs 7252
This theorem is referenced by:  prarloc  7402
  Copyright terms: Public domain W3C validator