Step | Hyp | Ref
| Expression |
1 | | prarloclemarch 7359 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐶 ∈ Q)
→ ∃𝑧 ∈
N 𝐴
<Q ([〈𝑧, 1o〉]
~Q ·Q 𝐶)) |
2 | 1 | 3adant2 1006 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) → ∃𝑧 ∈ N 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶)) |
3 | | pinn 7250 |
. . . . . . . 8
⊢ (𝑧 ∈ N →
𝑧 ∈
ω) |
4 | | 1pi 7256 |
. . . . . . . . . . . 12
⊢
1o ∈ N |
5 | 4 | elexi 2738 |
. . . . . . . . . . 11
⊢
1o ∈ V |
6 | 5 | sucid 4395 |
. . . . . . . . . 10
⊢
1o ∈ suc 1o |
7 | | df-2o 6385 |
. . . . . . . . . 10
⊢
2o = suc 1o |
8 | 6, 7 | eleqtrri 2242 |
. . . . . . . . 9
⊢
1o ∈ 2o |
9 | | 2onn 6489 |
. . . . . . . . . . 11
⊢
2o ∈ ω |
10 | | nnaword2 6482 |
. . . . . . . . . . 11
⊢
((2o ∈ ω ∧ 𝑧 ∈ ω) → 2o ⊆
(𝑧 +o
2o)) |
11 | 9, 10 | mpan 421 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ω →
2o ⊆ (𝑧
+o 2o)) |
12 | 11 | sseld 3141 |
. . . . . . . . 9
⊢ (𝑧 ∈ ω →
(1o ∈ 2o → 1o ∈ (𝑧 +o
2o))) |
13 | 8, 12 | mpi 15 |
. . . . . . . 8
⊢ (𝑧 ∈ ω →
1o ∈ (𝑧
+o 2o)) |
14 | 3, 13 | syl 14 |
. . . . . . 7
⊢ (𝑧 ∈ N →
1o ∈ (𝑧
+o 2o)) |
15 | | o1p1e2 6436 |
. . . . . . . . 9
⊢
(1o +o 1o) =
2o |
16 | | addpiord 7257 |
. . . . . . . . . . 11
⊢
((1o ∈ N ∧ 1o ∈
N) → (1o +N
1o) = (1o +o 1o)) |
17 | 4, 4, 16 | mp2an 423 |
. . . . . . . . . 10
⊢
(1o +N 1o) =
(1o +o 1o) |
18 | | addclpi 7268 |
. . . . . . . . . . 11
⊢
((1o ∈ N ∧ 1o ∈
N) → (1o +N
1o) ∈ N) |
19 | 4, 4, 18 | mp2an 423 |
. . . . . . . . . 10
⊢
(1o +N 1o) ∈
N |
20 | 17, 19 | eqeltrri 2240 |
. . . . . . . . 9
⊢
(1o +o 1o) ∈
N |
21 | 15, 20 | eqeltrri 2240 |
. . . . . . . 8
⊢
2o ∈ N |
22 | | addpiord 7257 |
. . . . . . . 8
⊢ ((𝑧 ∈ N ∧
2o ∈ N) → (𝑧 +N 2o) =
(𝑧 +o
2o)) |
23 | 21, 22 | mpan2 422 |
. . . . . . 7
⊢ (𝑧 ∈ N →
(𝑧
+N 2o) = (𝑧 +o
2o)) |
24 | 14, 23 | eleqtrrd 2246 |
. . . . . 6
⊢ (𝑧 ∈ N →
1o ∈ (𝑧
+N 2o)) |
25 | | addclpi 7268 |
. . . . . . . 8
⊢ ((𝑧 ∈ N ∧
2o ∈ N) → (𝑧 +N 2o)
∈ N) |
26 | 21, 25 | mpan2 422 |
. . . . . . 7
⊢ (𝑧 ∈ N →
(𝑧
+N 2o) ∈
N) |
27 | | ltpiord 7260 |
. . . . . . . 8
⊢
((1o ∈ N ∧ (𝑧 +N 2o)
∈ N) → (1o <N
(𝑧
+N 2o) ↔ 1o ∈ (𝑧 +N
2o))) |
28 | 4, 27 | mpan 421 |
. . . . . . 7
⊢ ((𝑧 +N
2o) ∈ N → (1o
<N (𝑧 +N 2o)
↔ 1o ∈ (𝑧 +N
2o))) |
29 | 26, 28 | syl 14 |
. . . . . 6
⊢ (𝑧 ∈ N →
(1o <N (𝑧 +N 2o)
↔ 1o ∈ (𝑧 +N
2o))) |
30 | 24, 29 | mpbird 166 |
. . . . 5
⊢ (𝑧 ∈ N →
1o <N (𝑧 +N
2o)) |
31 | 30 | adantl 275 |
. . . 4
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → 1o <N
(𝑧
+N 2o)) |
32 | 31 | adantrr 471 |
. . 3
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → 1o
<N (𝑧 +N
2o)) |
33 | | nna0 6442 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ω → (𝑧 +o ∅) = 𝑧) |
34 | | 0lt1o 6408 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∅
∈ 1o |
35 | | 1on 6391 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
1o ∈ On |
36 | 35 | onsuci 4493 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ suc
1o ∈ On |
37 | | ontr1 4367 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
1o ∈ On → ((∅ ∈ 1o ∧
1o ∈ suc 1o) → ∅ ∈ suc
1o)) |
38 | 36, 37 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((∅
∈ 1o ∧ 1o ∈ suc 1o) →
∅ ∈ suc 1o) |
39 | 34, 6, 38 | mp2an 423 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∅
∈ suc 1o |
40 | 39, 7 | eleqtrri 2242 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ 2o |
41 | | nnaordi 6476 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2o ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈
2o → (𝑧
+o ∅) ∈ (𝑧 +o
2o))) |
42 | 9, 41 | mpan 421 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ω → (∅
∈ 2o → (𝑧 +o ∅) ∈ (𝑧 +o
2o))) |
43 | 40, 42 | mpi 15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ω → (𝑧 +o ∅) ∈
(𝑧 +o
2o)) |
44 | 33, 43 | eqeltrrd 2244 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +o
2o)) |
45 | 3, 44 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ N →
𝑧 ∈ (𝑧 +o
2o)) |
46 | 45, 23 | eleqtrrd 2246 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
𝑧 ∈ (𝑧 +N
2o)) |
47 | | ltpiord 7260 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ N ∧
(𝑧
+N 2o) ∈ N) →
(𝑧
<N (𝑧 +N 2o)
↔ 𝑧 ∈ (𝑧 +N
2o))) |
48 | 26, 47 | mpdan 418 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
(𝑧
<N (𝑧 +N 2o)
↔ 𝑧 ∈ (𝑧 +N
2o))) |
49 | 46, 48 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ N →
𝑧
<N (𝑧 +N
2o)) |
50 | | mulidpi 7259 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ N →
(𝑧
·N 1o) = 𝑧) |
51 | | mulcompig 7272 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 +N
2o) ∈ N ∧ 1o ∈
N) → ((𝑧
+N 2o) ·N
1o) = (1o ·N (𝑧 +N
2o))) |
52 | 4, 51 | mpan2 422 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 +N
2o) ∈ N → ((𝑧 +N 2o)
·N 1o) = (1o
·N (𝑧 +N
2o))) |
53 | 26, 52 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
((𝑧
+N 2o) ·N
1o) = (1o ·N (𝑧 +N
2o))) |
54 | | mulidpi 7259 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 +N
2o) ∈ N → ((𝑧 +N 2o)
·N 1o) = (𝑧 +N
2o)) |
55 | 26, 54 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
((𝑧
+N 2o) ·N
1o) = (𝑧
+N 2o)) |
56 | 53, 55 | eqtr3d 2200 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ N →
(1o ·N (𝑧 +N 2o))
= (𝑧
+N 2o)) |
57 | 49, 50, 56 | 3brtr4d 4014 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ N →
(𝑧
·N 1o)
<N (1o
·N (𝑧 +N
2o))) |
58 | | ordpipqqs 7315 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ N ∧
1o ∈ N) ∧ ((𝑧 +N 2o)
∈ N ∧ 1o ∈ N)) →
([〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ↔ (𝑧 ·N
1o) <N (1o
·N (𝑧 +N
2o)))) |
59 | 4, 58 | mpanl2 432 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ N ∧
((𝑧
+N 2o) ∈ N ∧
1o ∈ N)) → ([〈𝑧, 1o〉]
~Q <Q [〈(𝑧 +N
2o), 1o〉] ~Q ↔ (𝑧
·N 1o)
<N (1o
·N (𝑧 +N
2o)))) |
60 | 4, 59 | mpanr2 435 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
(𝑧
+N 2o) ∈ N) →
([〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ↔ (𝑧 ·N
1o) <N (1o
·N (𝑧 +N
2o)))) |
61 | 26, 60 | mpdan 418 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ N →
([〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ↔ (𝑧 ·N
1o) <N (1o
·N (𝑧 +N
2o)))) |
62 | 57, 61 | mpbird 166 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ N →
[〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ) |
63 | 62 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Q ∧
𝑧 ∈ N)
→ [〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ) |
64 | | opelxpi 4636 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 +N
2o) ∈ N ∧ 1o ∈
N) → 〈(𝑧 +N 2o),
1o〉 ∈ (N ×
N)) |
65 | 4, 64 | mpan2 422 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 +N
2o) ∈ N → 〈(𝑧 +N 2o),
1o〉 ∈ (N ×
N)) |
66 | | enqex 7301 |
. . . . . . . . . . . . . . . 16
⊢
~Q ∈ V |
67 | 66 | ecelqsi 6555 |
. . . . . . . . . . . . . . 15
⊢
(〈(𝑧
+N 2o), 1o〉 ∈
(N × N) → [〈(𝑧 +N 2o),
1o〉] ~Q ∈ ((N
× N) / ~Q
)) |
68 | 26, 65, 67 | 3syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
[〈(𝑧
+N 2o), 1o〉]
~Q ∈ ((N × N)
/ ~Q )) |
69 | | df-nqqs 7289 |
. . . . . . . . . . . . . 14
⊢
Q = ((N × N) /
~Q ) |
70 | 68, 69 | eleqtrrdi 2260 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ N →
[〈(𝑧
+N 2o), 1o〉]
~Q ∈ Q) |
71 | | opelxpi 4636 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ N ∧
1o ∈ N) → 〈𝑧, 1o〉 ∈ (N
× N)) |
72 | 4, 71 | mpan2 422 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ N →
〈𝑧,
1o〉 ∈ (N ×
N)) |
73 | 66 | ecelqsi 6555 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑧,
1o〉 ∈ (N × N) →
[〈𝑧,
1o〉] ~Q ∈ ((N
× N) / ~Q
)) |
74 | 72, 73 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ N →
[〈𝑧,
1o〉] ~Q ∈ ((N
× N) / ~Q
)) |
75 | 74, 69 | eleqtrrdi 2260 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ N →
[〈𝑧,
1o〉] ~Q ∈
Q) |
76 | | ltmnqg 7342 |
. . . . . . . . . . . . . 14
⊢
(([〈𝑧,
1o〉] ~Q ∈ Q ∧
[〈(𝑧
+N 2o), 1o〉]
~Q ∈ Q ∧ 𝐶 ∈ Q) →
([〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ↔ (𝐶 ·Q
[〈𝑧,
1o〉] ~Q )
<Q (𝐶 ·Q
[〈(𝑧
+N 2o), 1o〉]
~Q ))) |
77 | 75, 76 | syl3an1 1261 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ N ∧
[〈(𝑧
+N 2o), 1o〉]
~Q ∈ Q ∧ 𝐶 ∈ Q) →
([〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ↔ (𝐶 ·Q
[〈𝑧,
1o〉] ~Q )
<Q (𝐶 ·Q
[〈(𝑧
+N 2o), 1o〉]
~Q ))) |
78 | 70, 77 | syl3an2 1262 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ N ∧
𝑧 ∈ N
∧ 𝐶 ∈
Q) → ([〈𝑧, 1o〉]
~Q <Q [〈(𝑧 +N
2o), 1o〉] ~Q ↔ (𝐶
·Q [〈𝑧, 1o〉]
~Q ) <Q (𝐶 ·Q
[〈(𝑧
+N 2o), 1o〉]
~Q ))) |
79 | 78 | 3anidm12 1285 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ N ∧
𝐶 ∈ Q)
→ ([〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ↔ (𝐶 ·Q
[〈𝑧,
1o〉] ~Q )
<Q (𝐶 ·Q
[〈(𝑧
+N 2o), 1o〉]
~Q ))) |
80 | 79 | ancoms 266 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Q ∧
𝑧 ∈ N)
→ ([〈𝑧,
1o〉] ~Q <Q
[〈(𝑧
+N 2o), 1o〉]
~Q ↔ (𝐶 ·Q
[〈𝑧,
1o〉] ~Q )
<Q (𝐶 ·Q
[〈(𝑧
+N 2o), 1o〉]
~Q ))) |
81 | 63, 80 | mpbid 146 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Q ∧
𝑧 ∈ N)
→ (𝐶
·Q [〈𝑧, 1o〉]
~Q ) <Q (𝐶 ·Q
[〈(𝑧
+N 2o), 1o〉]
~Q )) |
82 | | mulcomnqg 7324 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Q ∧
[〈𝑧,
1o〉] ~Q ∈ Q) →
(𝐶
·Q [〈𝑧, 1o〉]
~Q ) = ([〈𝑧, 1o〉]
~Q ·Q 𝐶)) |
83 | 75, 82 | sylan2 284 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Q ∧
𝑧 ∈ N)
→ (𝐶
·Q [〈𝑧, 1o〉]
~Q ) = ([〈𝑧, 1o〉]
~Q ·Q 𝐶)) |
84 | | mulcomnqg 7324 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Q ∧
[〈(𝑧
+N 2o), 1o〉]
~Q ∈ Q) → (𝐶 ·Q
[〈(𝑧
+N 2o), 1o〉]
~Q ) = ([〈(𝑧 +N 2o),
1o〉] ~Q
·Q 𝐶)) |
85 | 70, 84 | sylan2 284 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Q ∧
𝑧 ∈ N)
→ (𝐶
·Q [〈(𝑧 +N 2o),
1o〉] ~Q ) = ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶)) |
86 | 81, 83, 85 | 3brtr3d 4013 |
. . . . . . . 8
⊢ ((𝐶 ∈ Q ∧
𝑧 ∈ N)
→ ([〈𝑧,
1o〉] ~Q
·Q 𝐶) <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)) |
87 | 86 | 3ad2antl3 1151 |
. . . . . . 7
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → ([〈𝑧, 1o〉]
~Q ·Q 𝐶) <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)) |
88 | 87 | adantrr 471 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → ([〈𝑧, 1o〉]
~Q ·Q 𝐶) <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)) |
89 | | ltsonq 7339 |
. . . . . . . . . 10
⊢
<Q Or Q |
90 | | ltrelnq 7306 |
. . . . . . . . . 10
⊢
<Q ⊆ (Q ×
Q) |
91 | 89, 90 | sotri 4999 |
. . . . . . . . 9
⊢ ((𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶) ∧ ([〈𝑧, 1o〉]
~Q ·Q 𝐶) <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)) → 𝐴 <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)) |
92 | 91 | ex 114 |
. . . . . . . 8
⊢ (𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶) → (([〈𝑧, 1o〉]
~Q ·Q 𝐶) <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) → 𝐴 <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶))) |
93 | 92 | adantl 275 |
. . . . . . 7
⊢ ((𝑧 ∈ N ∧
𝐴
<Q ([〈𝑧, 1o〉]
~Q ·Q 𝐶)) → (([〈𝑧, 1o〉]
~Q ·Q 𝐶) <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) → 𝐴 <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶))) |
94 | 93 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → (([〈𝑧, 1o〉]
~Q ·Q 𝐶) <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) → 𝐴 <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶))) |
95 | 88, 94 | mpd 13 |
. . . . 5
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → 𝐴 <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)) |
96 | | mulclnq 7317 |
. . . . . . . . . 10
⊢
(([〈(𝑧
+N 2o), 1o〉]
~Q ∈ Q ∧ 𝐶 ∈ Q) →
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) ∈
Q) |
97 | 70, 96 | sylan 281 |
. . . . . . . . 9
⊢ ((𝑧 ∈ N ∧
𝐶 ∈ Q)
→ ([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) ∈
Q) |
98 | 97 | ancoms 266 |
. . . . . . . 8
⊢ ((𝐶 ∈ Q ∧
𝑧 ∈ N)
→ ([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) ∈
Q) |
99 | 98 | 3ad2antl3 1151 |
. . . . . . 7
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → ([〈(𝑧 +N 2o),
1o〉] ~Q
·Q 𝐶) ∈ Q) |
100 | | simpl2 991 |
. . . . . . 7
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → 𝐵 ∈ Q) |
101 | | ltaddnq 7348 |
. . . . . . 7
⊢
((([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) ∈ Q ∧
𝐵 ∈ Q)
→ ([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵)) |
102 | 99, 100, 101 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → ([〈(𝑧 +N 2o),
1o〉] ~Q
·Q 𝐶) <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵)) |
103 | 102 | adantrr 471 |
. . . . 5
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → ([〈(𝑧 +N 2o),
1o〉] ~Q
·Q 𝐶) <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵)) |
104 | 89, 90 | sotri 4999 |
. . . . 5
⊢ ((𝐴 <Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) ∧ ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶) <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵)) → 𝐴 <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵)) |
105 | 95, 103, 104 | syl2anc 409 |
. . . 4
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → 𝐴 <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵)) |
106 | | addcomnqg 7322 |
. . . . . . 7
⊢
((([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) ∈ Q ∧
𝐵 ∈ Q)
→ (([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵) = (𝐵 +Q ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶))) |
107 | 99, 100, 106 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → (([〈(𝑧 +N 2o),
1o〉] ~Q
·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶))) |
108 | 107 | breq2d 3994 |
. . . . 5
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → (𝐴 <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵) ↔ 𝐴 <Q (𝐵 +Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)))) |
109 | 108 | adantrr 471 |
. . . 4
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → (𝐴 <Q
(([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶) +Q
𝐵) ↔ 𝐴 <Q (𝐵 +Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)))) |
110 | 105, 109 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → 𝐴 <Q (𝐵 +Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶))) |
111 | | simpr 109 |
. . . . 5
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → 𝑧 ∈ N) |
112 | | breq2 3986 |
. . . . . . . 8
⊢ (𝑥 = (𝑧 +N 2o)
→ (1o <N 𝑥 ↔ 1o
<N (𝑧 +N
2o))) |
113 | | opeq1 3758 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑧 +N 2o)
→ 〈𝑥,
1o〉 = 〈(𝑧 +N 2o),
1o〉) |
114 | 113 | eceq1d 6537 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑧 +N 2o)
→ [〈𝑥,
1o〉] ~Q = [〈(𝑧 +N 2o),
1o〉] ~Q ) |
115 | 114 | oveq1d 5857 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑧 +N 2o)
→ ([〈𝑥,
1o〉] ~Q
·Q 𝐶) = ([〈(𝑧 +N 2o),
1o〉] ~Q
·Q 𝐶)) |
116 | 115 | oveq2d 5858 |
. . . . . . . . 9
⊢ (𝑥 = (𝑧 +N 2o)
→ (𝐵
+Q ([〈𝑥, 1o〉]
~Q ·Q 𝐶)) = (𝐵 +Q ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶))) |
117 | 116 | breq2d 3994 |
. . . . . . . 8
⊢ (𝑥 = (𝑧 +N 2o)
→ (𝐴
<Q (𝐵 +Q ([〈𝑥, 1o〉]
~Q ·Q 𝐶)) ↔ 𝐴 <Q (𝐵 +Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶)))) |
118 | 112, 117 | anbi12d 465 |
. . . . . . 7
⊢ (𝑥 = (𝑧 +N 2o)
→ ((1o <N 𝑥 ∧ 𝐴 <Q (𝐵 +Q
([〈𝑥,
1o〉] ~Q
·Q 𝐶))) ↔ (1o
<N (𝑧 +N 2o)
∧ 𝐴
<Q (𝐵 +Q ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶))))) |
119 | 118 | rspcev 2830 |
. . . . . 6
⊢ (((𝑧 +N
2o) ∈ N ∧ (1o
<N (𝑧 +N 2o)
∧ 𝐴
<Q (𝐵 +Q ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶)))) → ∃𝑥 ∈ N (1o
<N 𝑥 ∧ 𝐴 <Q (𝐵 +Q
([〈𝑥,
1o〉] ~Q
·Q 𝐶)))) |
120 | 119 | ex 114 |
. . . . 5
⊢ ((𝑧 +N
2o) ∈ N → ((1o
<N (𝑧 +N 2o)
∧ 𝐴
<Q (𝐵 +Q ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶))) → ∃𝑥 ∈ N (1o
<N 𝑥 ∧ 𝐴 <Q (𝐵 +Q
([〈𝑥,
1o〉] ~Q
·Q 𝐶))))) |
121 | 111, 26, 120 | 3syl 17 |
. . . 4
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ 𝑧
∈ N) → ((1o <N
(𝑧
+N 2o) ∧ 𝐴 <Q (𝐵 +Q
([〈(𝑧
+N 2o), 1o〉]
~Q ·Q 𝐶))) → ∃𝑥 ∈ N
(1o <N 𝑥 ∧ 𝐴 <Q (𝐵 +Q
([〈𝑥,
1o〉] ~Q
·Q 𝐶))))) |
122 | 121 | adantrr 471 |
. . 3
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → ((1o
<N (𝑧 +N 2o)
∧ 𝐴
<Q (𝐵 +Q ([〈(𝑧 +N
2o), 1o〉] ~Q
·Q 𝐶))) → ∃𝑥 ∈ N (1o
<N 𝑥 ∧ 𝐴 <Q (𝐵 +Q
([〈𝑥,
1o〉] ~Q
·Q 𝐶))))) |
123 | 32, 110, 122 | mp2and 430 |
. 2
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) ∧ (𝑧
∈ N ∧ 𝐴 <Q
([〈𝑧,
1o〉] ~Q
·Q 𝐶))) → ∃𝑥 ∈ N (1o
<N 𝑥 ∧ 𝐴 <Q (𝐵 +Q
([〈𝑥,
1o〉] ~Q
·Q 𝐶)))) |
124 | 2, 123 | rexlimddv 2588 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ 𝐶 ∈
Q) → ∃𝑥 ∈ N (1o
<N 𝑥 ∧ 𝐴 <Q (𝐵 +Q
([〈𝑥,
1o〉] ~Q
·Q 𝐶)))) |