Step | Hyp | Ref
| Expression |
1 | | fvco3 5567 |
. . . . . 6
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
2 | 1 | 3ad2antl2 1155 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
3 | | fvco3 5567 |
. . . . . 6
⊢ ((𝐾:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐾)‘𝑥) = (𝐹‘(𝐾‘𝑥))) |
4 | 3 | 3ad2antl3 1156 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐾)‘𝑥) = (𝐹‘(𝐾‘𝑥))) |
5 | 2, 4 | eqeq12d 2185 |
. . . 4
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ (𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)))) |
6 | | simpl1 995 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵–1-1→𝐶) |
7 | | ffvelrn 5629 |
. . . . . 6
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
8 | 7 | 3ad2antl2 1155 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
9 | | ffvelrn 5629 |
. . . . . 6
⊢ ((𝐾:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) ∈ 𝐵) |
10 | 9 | 3ad2antl3 1156 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) ∈ 𝐵) |
11 | | f1fveq 5751 |
. . . . 5
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐾‘𝑥) ∈ 𝐵)) → ((𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
12 | 6, 8, 10, 11 | syl12anc 1231 |
. . . 4
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
13 | 5, 12 | bitrd 187 |
. . 3
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
14 | 13 | ralbidva 2466 |
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) |
15 | | f1f 5403 |
. . . . . 6
⊢ (𝐹:𝐵–1-1→𝐶 → 𝐹:𝐵⟶𝐶) |
16 | 15 | 3ad2ant1 1013 |
. . . . 5
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐹:𝐵⟶𝐶) |
17 | | ffn 5347 |
. . . . 5
⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) |
18 | 16, 17 | syl 14 |
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐹 Fn 𝐵) |
19 | | simp2 993 |
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐻:𝐴⟶𝐵) |
20 | | fnfco 5372 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐻:𝐴⟶𝐵) → (𝐹 ∘ 𝐻) Fn 𝐴) |
21 | 18, 19, 20 | syl2anc 409 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐻) Fn 𝐴) |
22 | | simp3 994 |
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐾:𝐴⟶𝐵) |
23 | | fnfco 5372 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐾) Fn 𝐴) |
24 | 18, 22, 23 | syl2anc 409 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐾) Fn 𝐴) |
25 | | eqfnfv 5593 |
. . 3
⊢ (((𝐹 ∘ 𝐻) Fn 𝐴 ∧ (𝐹 ∘ 𝐾) Fn 𝐴) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥))) |
26 | 21, 24, 25 | syl2anc 409 |
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥))) |
27 | | ffn 5347 |
. . . 4
⊢ (𝐻:𝐴⟶𝐵 → 𝐻 Fn 𝐴) |
28 | 19, 27 | syl 14 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐻 Fn 𝐴) |
29 | | ffn 5347 |
. . . 4
⊢ (𝐾:𝐴⟶𝐵 → 𝐾 Fn 𝐴) |
30 | 22, 29 | syl 14 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐾 Fn 𝐴) |
31 | | eqfnfv 5593 |
. . 3
⊢ ((𝐻 Fn 𝐴 ∧ 𝐾 Fn 𝐴) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) |
32 | 28, 30, 31 | syl2anc 409 |
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) |
33 | 14, 26, 32 | 3bitr4d 219 |
1
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ 𝐻 = 𝐾)) |