ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan1 GIF version

Theorem cocan1 5766
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan1 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))

Proof of Theorem cocan1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvco3 5567 . . . . . 6 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
213ad2antl2 1155 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
3 fvco3 5567 . . . . . 6 ((𝐾:𝐴𝐵𝑥𝐴) → ((𝐹𝐾)‘𝑥) = (𝐹‘(𝐾𝑥)))
433ad2antl3 1156 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹𝐾)‘𝑥) = (𝐹‘(𝐾𝑥)))
52, 4eqeq12d 2185 . . . 4 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ (𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥))))
6 simpl1 995 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → 𝐹:𝐵1-1𝐶)
7 ffvelrn 5629 . . . . . 6 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
873ad2antl2 1155 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
9 ffvelrn 5629 . . . . . 6 ((𝐾:𝐴𝐵𝑥𝐴) → (𝐾𝑥) ∈ 𝐵)
1093ad2antl3 1156 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐵)
11 f1fveq 5751 . . . . 5 ((𝐹:𝐵1-1𝐶 ∧ ((𝐻𝑥) ∈ 𝐵 ∧ (𝐾𝑥) ∈ 𝐵)) → ((𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥)) ↔ (𝐻𝑥) = (𝐾𝑥)))
126, 8, 10, 11syl12anc 1231 . . . 4 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥)) ↔ (𝐻𝑥) = (𝐾𝑥)))
135, 12bitrd 187 . . 3 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ (𝐻𝑥) = (𝐾𝑥)))
1413ralbidva 2466 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
15 f1f 5403 . . . . . 6 (𝐹:𝐵1-1𝐶𝐹:𝐵𝐶)
16153ad2ant1 1013 . . . . 5 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐹:𝐵𝐶)
17 ffn 5347 . . . . 5 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
1816, 17syl 14 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐹 Fn 𝐵)
19 simp2 993 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐻:𝐴𝐵)
20 fnfco 5372 . . . 4 ((𝐹 Fn 𝐵𝐻:𝐴𝐵) → (𝐹𝐻) Fn 𝐴)
2118, 19, 20syl2anc 409 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐹𝐻) Fn 𝐴)
22 simp3 994 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐾:𝐴𝐵)
23 fnfco 5372 . . . 4 ((𝐹 Fn 𝐵𝐾:𝐴𝐵) → (𝐹𝐾) Fn 𝐴)
2418, 22, 23syl2anc 409 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐹𝐾) Fn 𝐴)
25 eqfnfv 5593 . . 3 (((𝐹𝐻) Fn 𝐴 ∧ (𝐹𝐾) Fn 𝐴) → ((𝐹𝐻) = (𝐹𝐾) ↔ ∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥)))
2621, 24, 25syl2anc 409 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ ∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥)))
27 ffn 5347 . . . 4 (𝐻:𝐴𝐵𝐻 Fn 𝐴)
2819, 27syl 14 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐻 Fn 𝐴)
29 ffn 5347 . . . 4 (𝐾:𝐴𝐵𝐾 Fn 𝐴)
3022, 29syl 14 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐾 Fn 𝐴)
31 eqfnfv 5593 . . 3 ((𝐻 Fn 𝐴𝐾 Fn 𝐴) → (𝐻 = 𝐾 ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
3228, 30, 31syl2anc 409 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
3314, 26, 323bitr4d 219 1 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  ccom 4615   Fn wfn 5193  wf 5194  1-1wf1 5195  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fv 5206
This theorem is referenced by:  mapen  6824  hashfacen  10771
  Copyright terms: Public domain W3C validator