ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocan1 GIF version

Theorem cocan1 5782
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan1 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))

Proof of Theorem cocan1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvco3 5583 . . . . . 6 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
213ad2antl2 1160 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
3 fvco3 5583 . . . . . 6 ((𝐾:𝐴𝐵𝑥𝐴) → ((𝐹𝐾)‘𝑥) = (𝐹‘(𝐾𝑥)))
433ad2antl3 1161 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹𝐾)‘𝑥) = (𝐹‘(𝐾𝑥)))
52, 4eqeq12d 2192 . . . 4 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ (𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥))))
6 simpl1 1000 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → 𝐹:𝐵1-1𝐶)
7 ffvelcdm 5645 . . . . . 6 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
873ad2antl2 1160 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
9 ffvelcdm 5645 . . . . . 6 ((𝐾:𝐴𝐵𝑥𝐴) → (𝐾𝑥) ∈ 𝐵)
1093ad2antl3 1161 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐵)
11 f1fveq 5767 . . . . 5 ((𝐹:𝐵1-1𝐶 ∧ ((𝐻𝑥) ∈ 𝐵 ∧ (𝐾𝑥) ∈ 𝐵)) → ((𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥)) ↔ (𝐻𝑥) = (𝐾𝑥)))
126, 8, 10, 11syl12anc 1236 . . . 4 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥)) ↔ (𝐻𝑥) = (𝐾𝑥)))
135, 12bitrd 188 . . 3 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ (𝐻𝑥) = (𝐾𝑥)))
1413ralbidva 2473 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
15 f1f 5417 . . . . . 6 (𝐹:𝐵1-1𝐶𝐹:𝐵𝐶)
16153ad2ant1 1018 . . . . 5 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐹:𝐵𝐶)
17 ffn 5361 . . . . 5 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
1816, 17syl 14 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐹 Fn 𝐵)
19 simp2 998 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐻:𝐴𝐵)
20 fnfco 5386 . . . 4 ((𝐹 Fn 𝐵𝐻:𝐴𝐵) → (𝐹𝐻) Fn 𝐴)
2118, 19, 20syl2anc 411 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐹𝐻) Fn 𝐴)
22 simp3 999 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐾:𝐴𝐵)
23 fnfco 5386 . . . 4 ((𝐹 Fn 𝐵𝐾:𝐴𝐵) → (𝐹𝐾) Fn 𝐴)
2418, 22, 23syl2anc 411 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐹𝐾) Fn 𝐴)
25 eqfnfv 5609 . . 3 (((𝐹𝐻) Fn 𝐴 ∧ (𝐹𝐾) Fn 𝐴) → ((𝐹𝐻) = (𝐹𝐾) ↔ ∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥)))
2621, 24, 25syl2anc 411 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ ∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥)))
27 ffn 5361 . . . 4 (𝐻:𝐴𝐵𝐻 Fn 𝐴)
2819, 27syl 14 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐻 Fn 𝐴)
29 ffn 5361 . . . 4 (𝐾:𝐴𝐵𝐾 Fn 𝐴)
3022, 29syl 14 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐾 Fn 𝐴)
31 eqfnfv 5609 . . 3 ((𝐻 Fn 𝐴𝐾 Fn 𝐴) → (𝐻 = 𝐾 ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
3228, 30, 31syl2anc 411 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
3314, 26, 323bitr4d 220 1 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  ccom 4627   Fn wfn 5207  wf 5208  1-1wf1 5209  cfv 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fv 5220
This theorem is referenced by:  mapen  6840  hashfacen  10800
  Copyright terms: Public domain W3C validator