| Step | Hyp | Ref
 | Expression | 
| 1 |   | fvco3 5632 | 
. . . . . 6
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) | 
| 2 | 1 | 3ad2antl2 1162 | 
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) | 
| 3 |   | fvco3 5632 | 
. . . . . 6
⊢ ((𝐾:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐾)‘𝑥) = (𝐹‘(𝐾‘𝑥))) | 
| 4 | 3 | 3ad2antl3 1163 | 
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐾)‘𝑥) = (𝐹‘(𝐾‘𝑥))) | 
| 5 | 2, 4 | eqeq12d 2211 | 
. . . 4
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ (𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)))) | 
| 6 |   | simpl1 1002 | 
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵–1-1→𝐶) | 
| 7 |   | ffvelcdm 5695 | 
. . . . . 6
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) | 
| 8 | 7 | 3ad2antl2 1162 | 
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) | 
| 9 |   | ffvelcdm 5695 | 
. . . . . 6
⊢ ((𝐾:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) ∈ 𝐵) | 
| 10 | 9 | 3ad2antl3 1163 | 
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) ∈ 𝐵) | 
| 11 |   | f1fveq 5819 | 
. . . . 5
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐾‘𝑥) ∈ 𝐵)) → ((𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) | 
| 12 | 6, 8, 10, 11 | syl12anc 1247 | 
. . . 4
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) | 
| 13 | 5, 12 | bitrd 188 | 
. . 3
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) | 
| 14 | 13 | ralbidva 2493 | 
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) | 
| 15 |   | f1f 5463 | 
. . . . . 6
⊢ (𝐹:𝐵–1-1→𝐶 → 𝐹:𝐵⟶𝐶) | 
| 16 | 15 | 3ad2ant1 1020 | 
. . . . 5
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐹:𝐵⟶𝐶) | 
| 17 |   | ffn 5407 | 
. . . . 5
⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) | 
| 18 | 16, 17 | syl 14 | 
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐹 Fn 𝐵) | 
| 19 |   | simp2 1000 | 
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐻:𝐴⟶𝐵) | 
| 20 |   | fnfco 5432 | 
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐻:𝐴⟶𝐵) → (𝐹 ∘ 𝐻) Fn 𝐴) | 
| 21 | 18, 19, 20 | syl2anc 411 | 
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐻) Fn 𝐴) | 
| 22 |   | simp3 1001 | 
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐾:𝐴⟶𝐵) | 
| 23 |   | fnfco 5432 | 
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐾) Fn 𝐴) | 
| 24 | 18, 22, 23 | syl2anc 411 | 
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐾) Fn 𝐴) | 
| 25 |   | eqfnfv 5659 | 
. . 3
⊢ (((𝐹 ∘ 𝐻) Fn 𝐴 ∧ (𝐹 ∘ 𝐾) Fn 𝐴) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥))) | 
| 26 | 21, 24, 25 | syl2anc 411 | 
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥))) | 
| 27 |   | ffn 5407 | 
. . . 4
⊢ (𝐻:𝐴⟶𝐵 → 𝐻 Fn 𝐴) | 
| 28 | 19, 27 | syl 14 | 
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐻 Fn 𝐴) | 
| 29 |   | ffn 5407 | 
. . . 4
⊢ (𝐾:𝐴⟶𝐵 → 𝐾 Fn 𝐴) | 
| 30 | 22, 29 | syl 14 | 
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐾 Fn 𝐴) | 
| 31 |   | eqfnfv 5659 | 
. . 3
⊢ ((𝐻 Fn 𝐴 ∧ 𝐾 Fn 𝐴) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) | 
| 32 | 28, 30, 31 | syl2anc 411 | 
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) | 
| 33 | 14, 26, 32 | 3bitr4d 220 | 
1
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ 𝐻 = 𝐾)) |