ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcogw GIF version

Theorem brcogw 4865
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
brcogw (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)

Proof of Theorem brcogw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴𝑉)
2 simpl2 1004 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐵𝑊)
3 breq2 4063 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝐷𝑥𝐴𝐷𝑋))
4 breq1 4062 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐶𝐵𝑋𝐶𝐵))
53, 4anbi12d 473 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝐷𝑥𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋𝑋𝐶𝐵)))
65spcegv 2868 . . . 4 (𝑋𝑍 → ((𝐴𝐷𝑋𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
76imp 124 . . 3 ((𝑋𝑍 ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
873ad2antl3 1164 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
9 brcog 4863 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
109biimpar 297 . 2 (((𝐴𝑉𝐵𝑊) ∧ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
111, 2, 8, 10syl21anc 1249 1 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wex 1516  wcel 2178   class class class wbr 4059  ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-co 4702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator