ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcogw GIF version

Theorem brcogw 4780
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
brcogw (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)

Proof of Theorem brcogw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 995 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴𝑉)
2 simpl2 996 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐵𝑊)
3 breq2 3993 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝐷𝑥𝐴𝐷𝑋))
4 breq1 3992 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐶𝐵𝑋𝐶𝐵))
53, 4anbi12d 470 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝐷𝑥𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋𝑋𝐶𝐵)))
65spcegv 2818 . . . 4 (𝑋𝑍 → ((𝐴𝐷𝑋𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
76imp 123 . . 3 ((𝑋𝑍 ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
873ad2antl3 1156 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
9 brcog 4778 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
109biimpar 295 . 2 (((𝐴𝑉𝐵𝑊) ∧ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
111, 2, 8, 10syl21anc 1232 1 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wex 1485  wcel 2141   class class class wbr 3989  ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-co 4620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator