![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brcogw | GIF version |
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
brcogw | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1002 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴 ∈ 𝑉) | |
2 | simpl2 1003 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐵 ∈ 𝑊) | |
3 | breq2 4033 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴𝐷𝑥 ↔ 𝐴𝐷𝑋)) | |
4 | breq1 4032 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝐵 ↔ 𝑋𝐶𝐵)) | |
5 | 3, 4 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵))) |
6 | 5 | spcegv 2848 | . . . 4 ⊢ (𝑋 ∈ 𝑍 → ((𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
7 | 6 | imp 124 | . . 3 ⊢ ((𝑋 ∈ 𝑍 ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
8 | 7 | 3ad2antl3 1163 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
9 | brcog 4829 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
10 | 9 | biimpar 297 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
11 | 1, 2, 8, 10 | syl21anc 1248 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 class class class wbr 4029 ∘ ccom 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-co 4668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |