Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brcogw | GIF version |
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
brcogw | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 995 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴 ∈ 𝑉) | |
2 | simpl2 996 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐵 ∈ 𝑊) | |
3 | breq2 3993 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴𝐷𝑥 ↔ 𝐴𝐷𝑋)) | |
4 | breq1 3992 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝐵 ↔ 𝑋𝐶𝐵)) | |
5 | 3, 4 | anbi12d 470 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵))) |
6 | 5 | spcegv 2818 | . . . 4 ⊢ (𝑋 ∈ 𝑍 → ((𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
7 | 6 | imp 123 | . . 3 ⊢ ((𝑋 ∈ 𝑍 ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
8 | 7 | 3ad2antl3 1156 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
9 | brcog 4778 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
10 | 9 | biimpar 295 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
11 | 1, 2, 8, 10 | syl21anc 1232 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∃wex 1485 ∈ wcel 2141 class class class wbr 3989 ∘ ccom 4615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-co 4620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |