| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zdivmul | GIF version | ||
| Description: Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.) |
| Ref | Expression |
|---|---|
| zdivmul | ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9384 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 2 | 1 | 3ad2ant2 1022 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐵 ∈ ℂ) |
| 3 | zcn 9384 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 4 | 3 | 3ad2ant1 1021 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 5 | nncn 9051 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℂ) | |
| 6 | nnap0 9072 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 𝐷 # 0) | |
| 7 | 5, 6 | jca 306 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
| 8 | 7 | 3ad2ant3 1023 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
| 9 | divassap 8770 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) | |
| 10 | 2, 4, 8, 9 | syl3anc 1250 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) |
| 11 | 10 | 3comr 1214 | . . 3 ⊢ ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) |
| 12 | 11 | adantr 276 | . 2 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) |
| 13 | zmulcl 9433 | . . 3 ⊢ ((𝐵 ∈ ℤ ∧ (𝐴 / 𝐷) ∈ ℤ) → (𝐵 · (𝐴 / 𝐷)) ∈ ℤ) | |
| 14 | 13 | 3ad2antl3 1164 | . 2 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → (𝐵 · (𝐴 / 𝐷)) ∈ ℤ) |
| 15 | 12, 14 | eqeltrd 2283 | 1 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 0cc0 7932 · cmul 7937 # cap 8661 / cdiv 8752 ℕcn 9043 ℤcz 9379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-n0 9303 df-z 9380 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |