ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdivmul GIF version

Theorem zdivmul 9372
Description: Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdivmul (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ)

Proof of Theorem zdivmul
StepHypRef Expression
1 zcn 9287 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
213ad2ant2 1021 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐵 ∈ ℂ)
3 zcn 9287 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
433ad2ant1 1020 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ℂ)
5 nncn 8956 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
6 nnap0 8977 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 # 0)
75, 6jca 306 . . . . . 6 (𝐷 ∈ ℕ → (𝐷 ∈ ℂ ∧ 𝐷 # 0))
873ad2ant3 1022 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 ∈ ℂ ∧ 𝐷 # 0))
9 divassap 8676 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷)))
102, 4, 8, 9syl3anc 1249 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷)))
11103comr 1213 . . 3 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷)))
1211adantr 276 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷)))
13 zmulcl 9335 . . 3 ((𝐵 ∈ ℤ ∧ (𝐴 / 𝐷) ∈ ℤ) → (𝐵 · (𝐴 / 𝐷)) ∈ ℤ)
14133ad2antl3 1163 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → (𝐵 · (𝐴 / 𝐷)) ∈ ℤ)
1512, 14eqeltrd 2266 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5895  cc 7838  0cc0 7840   · cmul 7845   # cap 8567   / cdiv 8658  cn 8948  cz 9282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-n0 9206  df-z 9283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator