Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zdivmul | GIF version |
Description: Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.) |
Ref | Expression |
---|---|
zdivmul | ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9229 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
2 | 1 | 3ad2ant2 1019 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐵 ∈ ℂ) |
3 | zcn 9229 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | 3ad2ant1 1018 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ℂ) |
5 | nncn 8898 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 𝐷 ∈ ℂ) | |
6 | nnap0 8919 | . . . . . . 7 ⊢ (𝐷 ∈ ℕ → 𝐷 # 0) | |
7 | 5, 6 | jca 306 | . . . . . 6 ⊢ (𝐷 ∈ ℕ → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
8 | 7 | 3ad2ant3 1020 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
9 | divassap 8619 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) | |
10 | 2, 4, 8, 9 | syl3anc 1238 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) |
11 | 10 | 3comr 1211 | . . 3 ⊢ ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) |
12 | 11 | adantr 276 | . 2 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) = (𝐵 · (𝐴 / 𝐷))) |
13 | zmulcl 9277 | . . 3 ⊢ ((𝐵 ∈ ℤ ∧ (𝐴 / 𝐷) ∈ ℤ) → (𝐵 · (𝐴 / 𝐷)) ∈ ℤ) | |
14 | 13 | 3ad2antl3 1161 | . 2 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → (𝐵 · (𝐴 / 𝐷)) ∈ ℤ) |
15 | 12, 14 | eqeltrd 2252 | 1 ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℂcc 7784 0cc0 7786 · cmul 7791 # cap 8512 / cdiv 8601 ℕcn 8890 ℤcz 9224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-n0 9148 df-z 9225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |