ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr GIF version

Theorem ltsopr 7558
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4282). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 7557 . 2 <P Po P
2 ltdfpr 7468 . . . . 5 ((𝑥P𝑦P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
323adant3 1012 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
4 prop 7437 . . . . . . . . . . . 12 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
5 prnminu 7451 . . . . . . . . . . . 12 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
64, 5sylan 281 . . . . . . . . . . 11 ((𝑥P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
7 prop 7437 . . . . . . . . . . . 12 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
8 prnmaxl 7450 . . . . . . . . . . . 12 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
97, 8sylan 281 . . . . . . . . . . 11 ((𝑦P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
106, 9anim12i 336 . . . . . . . . . 10 (((𝑥P𝑞 ∈ (2nd𝑥)) ∧ (𝑦P𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1110an4s 583 . . . . . . . . 9 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
12 reeanv 2639 . . . . . . . . 9 (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) ↔ (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1311, 12sylibr 133 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
14133adantl3 1150 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
15 ltsonq 7360 . . . . . . . . . . . . 13 <Q Or Q
16 ltrelnq 7327 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
1715, 16sotri 5006 . . . . . . . . . . . 12 ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → 𝑟 <Q 𝑠)
1817adantl 275 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → 𝑟 <Q 𝑠)
19 prop 7437 . . . . . . . . . . . . . . . 16 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
20 prloc 7453 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2119, 20sylan 281 . . . . . . . . . . . . . . 15 ((𝑧P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
22213ad2antl3 1156 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2322ex 114 . . . . . . . . . . . . 13 ((𝑥P𝑦P𝑧P) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2423adantr 274 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2524ad2antrr 485 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2618, 25mpd 13 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
27 elprnqu 7444 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
284, 27sylan 281 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
29 ax-ia3 107 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (2nd𝑥) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3029adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
31 19.8a 1583 . . . . . . . . . . . . . . . . . . . 20 ((𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3228, 30, 31syl6an 1427 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
33323ad2antl1 1154 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
3433imp 123 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
35 df-rex 2454 . . . . . . . . . . . . . . . . 17 (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) ↔ ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3634, 35sylibr 133 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))
37 ltdfpr 7468 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑧P) → (𝑥<P 𝑧 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3837biimprd 157 . . . . . . . . . . . . . . . . . 18 ((𝑥P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
39383adant2 1011 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4039ad2antrr 485 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4136, 40mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧)
4241ex 114 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
4342adantrr 476 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
44 elprnql 7443 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠 ∈ (1st𝑦)) → 𝑠Q)
457, 44sylan 281 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → 𝑠Q)
46 pm3.21 262 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (1st𝑦) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4746adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
48 19.8a 1583 . . . . . . . . . . . . . . . . . . . 20 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4945, 47, 48syl6an 1427 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
50493ad2antl2 1155 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
5150imp 123 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
52 df-rex 2454 . . . . . . . . . . . . . . . . 17 (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) ↔ ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5351, 52sylibr 133 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))
54 ltdfpr 7468 . . . . . . . . . . . . . . . . . . . 20 ((𝑧P𝑦P) → (𝑧<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5554biimprd 157 . . . . . . . . . . . . . . . . . . 19 ((𝑧P𝑦P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5655ancoms 266 . . . . . . . . . . . . . . . . . 18 ((𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
57563adant1 1010 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5857ad2antrr 485 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5953, 58mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → 𝑧<P 𝑦)
6059ex 114 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6160adantrl 475 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6243, 61orim12d 781 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6362adantlr 474 . . . . . . . . . . 11 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6463adantr 274 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6526, 64mpd 13 . . . . . . . . 9 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑥<P 𝑧𝑧<P 𝑦))
6665ex 114 . . . . . . . 8 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6766rexlimdvva 2595 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6814, 67mpd 13 . . . . . 6 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑥<P 𝑧𝑧<P 𝑦))
6968ex 114 . . . . 5 ((𝑥P𝑦P𝑧P) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
7069rexlimdvw 2591 . . . 4 ((𝑥P𝑦P𝑧P) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
713, 70sylbid 149 . . 3 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦)))
7271rgen3 2557 . 2 𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))
73 df-iso 4282 . 2 (<P Or P ↔ (<P Po P ∧ ∀𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))))
741, 72, 73mpbir2an 937 1 <P Or P
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3a 973  wex 1485  wcel 2141  wral 2448  wrex 2449  cop 3586   class class class wbr 3989   Po wpo 4279   Or wor 4280  cfv 5198  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   <Q cltq 7247  Pcnp 7253  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-enq 7309  df-nqqs 7310  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  prplnqu  7582  addextpr  7583  caucvgprprlemk  7645  caucvgprprlemnkltj  7651  caucvgprprlemnkeqj  7652  caucvgprprlemnjltk  7653  caucvgprprlemnbj  7655  caucvgprprlemml  7656  caucvgprprlemlol  7660  caucvgprprlemupu  7662  caucvgprprlemloc  7665  caucvgprprlemaddq  7670  suplocexprlemmu  7680  lttrsr  7724  ltposr  7725  ltsosr  7726  archsr  7744
  Copyright terms: Public domain W3C validator