ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr GIF version

Theorem ltsopr 7656
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4328). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 7655 . 2 <P Po P
2 ltdfpr 7566 . . . . 5 ((𝑥P𝑦P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
323adant3 1019 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
4 prop 7535 . . . . . . . . . . . 12 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
5 prnminu 7549 . . . . . . . . . . . 12 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
64, 5sylan 283 . . . . . . . . . . 11 ((𝑥P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
7 prop 7535 . . . . . . . . . . . 12 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
8 prnmaxl 7548 . . . . . . . . . . . 12 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
97, 8sylan 283 . . . . . . . . . . 11 ((𝑦P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
106, 9anim12i 338 . . . . . . . . . 10 (((𝑥P𝑞 ∈ (2nd𝑥)) ∧ (𝑦P𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1110an4s 588 . . . . . . . . 9 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
12 reeanv 2664 . . . . . . . . 9 (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) ↔ (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1311, 12sylibr 134 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
14133adantl3 1157 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
15 ltsonq 7458 . . . . . . . . . . . . 13 <Q Or Q
16 ltrelnq 7425 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
1715, 16sotri 5061 . . . . . . . . . . . 12 ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → 𝑟 <Q 𝑠)
1817adantl 277 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → 𝑟 <Q 𝑠)
19 prop 7535 . . . . . . . . . . . . . . . 16 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
20 prloc 7551 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2119, 20sylan 283 . . . . . . . . . . . . . . 15 ((𝑧P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
22213ad2antl3 1163 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2322ex 115 . . . . . . . . . . . . 13 ((𝑥P𝑦P𝑧P) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2423adantr 276 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2524ad2antrr 488 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2618, 25mpd 13 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
27 elprnqu 7542 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
284, 27sylan 283 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
29 ax-ia3 108 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (2nd𝑥) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3029adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
31 19.8a 1601 . . . . . . . . . . . . . . . . . . . 20 ((𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3228, 30, 31syl6an 1445 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
33323ad2antl1 1161 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
3433imp 124 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
35 df-rex 2478 . . . . . . . . . . . . . . . . 17 (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) ↔ ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3634, 35sylibr 134 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))
37 ltdfpr 7566 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑧P) → (𝑥<P 𝑧 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3837biimprd 158 . . . . . . . . . . . . . . . . . 18 ((𝑥P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
39383adant2 1018 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4039ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4136, 40mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧)
4241ex 115 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
4342adantrr 479 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
44 elprnql 7541 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠 ∈ (1st𝑦)) → 𝑠Q)
457, 44sylan 283 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → 𝑠Q)
46 pm3.21 264 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (1st𝑦) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4746adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
48 19.8a 1601 . . . . . . . . . . . . . . . . . . . 20 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4945, 47, 48syl6an 1445 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
50493ad2antl2 1162 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
5150imp 124 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
52 df-rex 2478 . . . . . . . . . . . . . . . . 17 (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) ↔ ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5351, 52sylibr 134 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))
54 ltdfpr 7566 . . . . . . . . . . . . . . . . . . . 20 ((𝑧P𝑦P) → (𝑧<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5554biimprd 158 . . . . . . . . . . . . . . . . . . 19 ((𝑧P𝑦P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5655ancoms 268 . . . . . . . . . . . . . . . . . 18 ((𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
57563adant1 1017 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5857ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5953, 58mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → 𝑧<P 𝑦)
6059ex 115 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6160adantrl 478 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6243, 61orim12d 787 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6362adantlr 477 . . . . . . . . . . 11 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6463adantr 276 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6526, 64mpd 13 . . . . . . . . 9 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑥<P 𝑧𝑧<P 𝑦))
6665ex 115 . . . . . . . 8 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6766rexlimdvva 2619 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6814, 67mpd 13 . . . . . 6 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑥<P 𝑧𝑧<P 𝑦))
6968ex 115 . . . . 5 ((𝑥P𝑦P𝑧P) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
7069rexlimdvw 2615 . . . 4 ((𝑥P𝑦P𝑧P) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
713, 70sylbid 150 . . 3 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦)))
7271rgen3 2581 . 2 𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))
73 df-iso 4328 . 2 (<P Or P ↔ (<P Po P ∧ ∀𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))))
741, 72, 73mpbir2an 944 1 <P Or P
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980  wex 1503  wcel 2164  wral 2472  wrex 2473  cop 3621   class class class wbr 4029   Po wpo 4325   Or wor 4326  cfv 5254  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   <Q cltq 7345  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-lti 7367  df-enq 7407  df-nqqs 7408  df-ltnqqs 7413  df-inp 7526  df-iltp 7530
This theorem is referenced by:  prplnqu  7680  addextpr  7681  caucvgprprlemk  7743  caucvgprprlemnkltj  7749  caucvgprprlemnkeqj  7750  caucvgprprlemnjltk  7751  caucvgprprlemnbj  7753  caucvgprprlemml  7754  caucvgprprlemlol  7758  caucvgprprlemupu  7760  caucvgprprlemloc  7763  caucvgprprlemaddq  7768  suplocexprlemmu  7778  lttrsr  7822  ltposr  7823  ltsosr  7824  archsr  7842
  Copyright terms: Public domain W3C validator