ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr GIF version

Theorem ltsopr 7305
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4157). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 7304 . 2 <P Po P
2 ltdfpr 7215 . . . . 5 ((𝑥P𝑦P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
323adant3 969 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
4 prop 7184 . . . . . . . . . . . 12 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
5 prnminu 7198 . . . . . . . . . . . 12 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
64, 5sylan 279 . . . . . . . . . . 11 ((𝑥P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
7 prop 7184 . . . . . . . . . . . 12 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
8 prnmaxl 7197 . . . . . . . . . . . 12 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
97, 8sylan 279 . . . . . . . . . . 11 ((𝑦P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
106, 9anim12i 334 . . . . . . . . . 10 (((𝑥P𝑞 ∈ (2nd𝑥)) ∧ (𝑦P𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1110an4s 558 . . . . . . . . 9 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
12 reeanv 2558 . . . . . . . . 9 (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) ↔ (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1311, 12sylibr 133 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
14133adantl3 1107 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
15 ltsonq 7107 . . . . . . . . . . . . 13 <Q Or Q
16 ltrelnq 7074 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
1715, 16sotri 4870 . . . . . . . . . . . 12 ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → 𝑟 <Q 𝑠)
1817adantl 273 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → 𝑟 <Q 𝑠)
19 prop 7184 . . . . . . . . . . . . . . . 16 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
20 prloc 7200 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2119, 20sylan 279 . . . . . . . . . . . . . . 15 ((𝑧P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
22213ad2antl3 1113 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2322ex 114 . . . . . . . . . . . . 13 ((𝑥P𝑦P𝑧P) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2423adantr 272 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2524ad2antrr 475 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2618, 25mpd 13 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
27 elprnqu 7191 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
284, 27sylan 279 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
29 ax-ia3 107 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (2nd𝑥) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3029adantl 273 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
31 19.8a 1537 . . . . . . . . . . . . . . . . . . . 20 ((𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3228, 30, 31syl6an 1378 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
33323ad2antl1 1111 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
3433imp 123 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
35 df-rex 2381 . . . . . . . . . . . . . . . . 17 (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) ↔ ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3634, 35sylibr 133 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))
37 ltdfpr 7215 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑧P) → (𝑥<P 𝑧 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3837biimprd 157 . . . . . . . . . . . . . . . . . 18 ((𝑥P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
39383adant2 968 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4039ad2antrr 475 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4136, 40mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧)
4241ex 114 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
4342adantrr 466 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
44 elprnql 7190 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠 ∈ (1st𝑦)) → 𝑠Q)
457, 44sylan 279 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → 𝑠Q)
46 pm3.21 262 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (1st𝑦) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4746adantl 273 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
48 19.8a 1537 . . . . . . . . . . . . . . . . . . . 20 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4945, 47, 48syl6an 1378 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
50493ad2antl2 1112 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
5150imp 123 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
52 df-rex 2381 . . . . . . . . . . . . . . . . 17 (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) ↔ ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5351, 52sylibr 133 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))
54 ltdfpr 7215 . . . . . . . . . . . . . . . . . . . 20 ((𝑧P𝑦P) → (𝑧<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5554biimprd 157 . . . . . . . . . . . . . . . . . . 19 ((𝑧P𝑦P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5655ancoms 266 . . . . . . . . . . . . . . . . . 18 ((𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
57563adant1 967 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5857ad2antrr 475 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5953, 58mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → 𝑧<P 𝑦)
6059ex 114 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6160adantrl 465 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6243, 61orim12d 741 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6362adantlr 464 . . . . . . . . . . 11 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6463adantr 272 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6526, 64mpd 13 . . . . . . . . 9 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑥<P 𝑧𝑧<P 𝑦))
6665ex 114 . . . . . . . 8 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6766rexlimdvva 2516 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6814, 67mpd 13 . . . . . 6 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑥<P 𝑧𝑧<P 𝑦))
6968ex 114 . . . . 5 ((𝑥P𝑦P𝑧P) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
7069rexlimdvw 2512 . . . 4 ((𝑥P𝑦P𝑧P) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
713, 70sylbid 149 . . 3 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦)))
7271rgen3 2478 . 2 𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))
73 df-iso 4157 . 2 (<P Or P ↔ (<P Po P ∧ ∀𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))))
741, 72, 73mpbir2an 894 1 <P Or P
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 670  w3a 930  wex 1436  wcel 1448  wral 2375  wrex 2376  cop 3477   class class class wbr 3875   Po wpo 4154   Or wor 4155  cfv 5059  1st c1st 5967  2nd c2nd 5968  Qcnq 6989   <Q cltq 6994  Pcnp 7000  <P cltp 7004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-mi 7015  df-lti 7016  df-enq 7056  df-nqqs 7057  df-ltnqqs 7062  df-inp 7175  df-iltp 7179
This theorem is referenced by:  prplnqu  7329  addextpr  7330  caucvgprprlemk  7392  caucvgprprlemnkltj  7398  caucvgprprlemnkeqj  7399  caucvgprprlemnjltk  7400  caucvgprprlemnbj  7402  caucvgprprlemml  7403  caucvgprprlemlol  7407  caucvgprprlemupu  7409  caucvgprprlemloc  7412  caucvgprprlemaddq  7417  lttrsr  7458  ltposr  7459  ltsosr  7460  archsr  7477
  Copyright terms: Public domain W3C validator