Step | Hyp | Ref
| Expression |
1 | | ltpopr 7536 |
. 2
⊢
<P Po P |
2 | | ltdfpr 7447 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥<P 𝑦 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦)))) |
3 | 2 | 3adant3 1007 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑥<P 𝑦 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦)))) |
4 | | prop 7416 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ P →
〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈
P) |
5 | | prnminu 7430 |
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P ∧ 𝑞 ∈ (2nd
‘𝑥)) →
∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞) |
6 | 4, 5 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ P ∧
𝑞 ∈ (2nd
‘𝑥)) →
∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞) |
7 | | prop 7416 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ P →
〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈
P) |
8 | | prnmaxl 7429 |
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ P ∧ 𝑞 ∈ (1st
‘𝑦)) →
∃𝑠 ∈
(1st ‘𝑦)𝑞 <Q 𝑠) |
9 | 7, 8 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ P ∧
𝑞 ∈ (1st
‘𝑦)) →
∃𝑠 ∈
(1st ‘𝑦)𝑞 <Q 𝑠) |
10 | 6, 9 | anim12i 336 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ P ∧
𝑞 ∈ (2nd
‘𝑥)) ∧ (𝑦 ∈ P ∧
𝑞 ∈ (1st
‘𝑦))) →
(∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st ‘𝑦)𝑞 <Q 𝑠)) |
11 | 10 | an4s 578 |
. . . . . . . . 9
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))
→ (∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st ‘𝑦)𝑞 <Q 𝑠)) |
12 | | reeanv 2635 |
. . . . . . . . 9
⊢
(∃𝑟 ∈
(2nd ‘𝑥)∃𝑠 ∈ (1st ‘𝑦)(𝑟 <Q 𝑞 ∧ 𝑞 <Q 𝑠) ↔ (∃𝑟 ∈ (2nd
‘𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st ‘𝑦)𝑞 <Q 𝑠)) |
13 | 11, 12 | sylibr 133 |
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))
→ ∃𝑟 ∈
(2nd ‘𝑥)∃𝑠 ∈ (1st ‘𝑦)(𝑟 <Q 𝑞 ∧ 𝑞 <Q 𝑠)) |
14 | 13 | 3adantl3 1145 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → ∃𝑟 ∈ (2nd
‘𝑥)∃𝑠 ∈ (1st
‘𝑦)(𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) |
15 | | ltsonq 7339 |
. . . . . . . . . . . . 13
⊢
<Q Or Q |
16 | | ltrelnq 7306 |
. . . . . . . . . . . . 13
⊢
<Q ⊆ (Q ×
Q) |
17 | 15, 16 | sotri 4999 |
. . . . . . . . . . . 12
⊢ ((𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠) → 𝑟 <Q 𝑠) |
18 | 17 | adantl 275 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → 𝑟 <Q 𝑠) |
19 | | prop 7416 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ P →
〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∈
P) |
20 | | prloc 7432 |
. . . . . . . . . . . . . . . 16
⊢
((〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∈ P ∧ 𝑟 <Q
𝑠) → (𝑟 ∈ (1st
‘𝑧) ∨ 𝑠 ∈ (2nd
‘𝑧))) |
21 | 19, 20 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ P ∧
𝑟
<Q 𝑠) → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧))) |
22 | 21 | 3ad2antl3 1151 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
<Q 𝑠) → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧))) |
23 | 22 | ex 114 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑟
<Q 𝑠 → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)))) |
24 | 23 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)))) |
25 | 24 | ad2antrr 480 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)))) |
26 | 18, 25 | mpd 13 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧))) |
27 | | elprnqu 7423 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P ∧ 𝑟 ∈ (2nd
‘𝑥)) → 𝑟 ∈
Q) |
28 | 4, 27 | sylan 281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ P ∧
𝑟 ∈ (2nd
‘𝑥)) → 𝑟 ∈
Q) |
29 | | ax-ia3 107 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ (2nd
‘𝑥) → (𝑟 ∈ (1st
‘𝑧) → (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
30 | 29 | adantl 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ P ∧
𝑟 ∈ (2nd
‘𝑥)) → (𝑟 ∈ (1st
‘𝑧) → (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
31 | | 19.8a 1578 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑟 ∈ Q ∧
(𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))) →
∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
32 | 28, 30, 31 | syl6an 1422 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ P ∧
𝑟 ∈ (2nd
‘𝑥)) → (𝑟 ∈ (1st
‘𝑧) →
∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))))) |
33 | 32 | 3ad2antl1 1149 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) → (𝑟 ∈ (1st ‘𝑧) → ∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))))) |
34 | 33 | imp 123 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → ∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
35 | | df-rex 2450 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑟 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑟 ∈
(1st ‘𝑧))
↔ ∃𝑟(𝑟 ∈ Q ∧
(𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
36 | 34, 35 | sylibr 133 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → ∃𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))) |
37 | | ltdfpr 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ P ∧
𝑧 ∈ P)
→ (𝑥<P 𝑧 ↔ ∃𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
38 | 37 | biimprd 157 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑟 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑟 ∈
(1st ‘𝑧))
→ 𝑥<P 𝑧)) |
39 | 38 | 3adant2 1006 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (∃𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑟 ∈ (1st ‘𝑧)) → 𝑥<P 𝑧)) |
40 | 39 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → (∃𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)) → 𝑥<P
𝑧)) |
41 | 36, 40 | mpd 13 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → 𝑥<P 𝑧) |
42 | 41 | ex 114 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) → (𝑟 ∈ (1st ‘𝑧) → 𝑥<P 𝑧)) |
43 | 42 | adantrr 471 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → (𝑟 ∈ (1st ‘𝑧) → 𝑥<P 𝑧)) |
44 | | elprnql 7422 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ P ∧ 𝑠 ∈ (1st
‘𝑦)) → 𝑠 ∈
Q) |
45 | 7, 44 | sylan 281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ P ∧
𝑠 ∈ (1st
‘𝑦)) → 𝑠 ∈
Q) |
46 | | pm3.21 262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ (1st
‘𝑦) → (𝑠 ∈ (2nd
‘𝑧) → (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
47 | 46 | adantl 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ P ∧
𝑠 ∈ (1st
‘𝑦)) → (𝑠 ∈ (2nd
‘𝑧) → (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
48 | | 19.8a 1578 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))) →
∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
49 | 45, 47, 48 | syl6an 1422 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑠 ∈ (1st
‘𝑦)) → (𝑠 ∈ (2nd
‘𝑧) →
∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))))) |
50 | 49 | 3ad2antl2 1150 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) → (𝑠 ∈ (2nd ‘𝑧) → ∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))))) |
51 | 50 | imp 123 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → ∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
52 | | df-rex 2450 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝑧)
∧ 𝑠 ∈
(1st ‘𝑦))
↔ ∃𝑠(𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
53 | 51, 52 | sylibr 133 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))) |
54 | | ltdfpr 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ P ∧
𝑦 ∈ P)
→ (𝑧<P 𝑦 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
55 | 54 | biimprd 157 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ P ∧
𝑦 ∈ P)
→ (∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝑧)
∧ 𝑠 ∈
(1st ‘𝑦))
→ 𝑧<P 𝑦)) |
56 | 55 | ancoms 266 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝑧)
∧ 𝑠 ∈
(1st ‘𝑦))
→ 𝑧<P 𝑦)) |
57 | 56 | 3adant1 1005 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (∃𝑠 ∈ Q (𝑠 ∈ (2nd ‘𝑧) ∧ 𝑠 ∈ (1st ‘𝑦)) → 𝑧<P 𝑦)) |
58 | 57 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → (∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)) → 𝑧<P
𝑦)) |
59 | 53, 58 | mpd 13 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → 𝑧<P 𝑦) |
60 | 59 | ex 114 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) → (𝑠 ∈ (2nd ‘𝑧) → 𝑧<P 𝑦)) |
61 | 60 | adantrl 470 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → (𝑠 ∈ (2nd ‘𝑧) → 𝑧<P 𝑦)) |
62 | 43, 61 | orim12d 776 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → ((𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
63 | 62 | adantlr 469 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) ∧ (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → ((𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
64 | 63 | adantr 274 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → ((𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
65 | 26, 64 | mpd 13 |
. . . . . . . . 9
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)) |
66 | 65 | ex 114 |
. . . . . . . 8
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) ∧ (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → ((𝑟 <Q 𝑞 ∧ 𝑞 <Q 𝑠) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
67 | 66 | rexlimdvva 2591 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → (∃𝑟 ∈ (2nd
‘𝑥)∃𝑠 ∈ (1st
‘𝑦)(𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
68 | 14, 67 | mpd 13 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)) |
69 | 68 | ex 114 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → ((𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
70 | 69 | rexlimdvw 2587 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
71 | 3, 70 | sylbid 149 |
. . 3
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑥<P 𝑦 → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
72 | 71 | rgen3 2553 |
. 2
⊢
∀𝑥 ∈
P ∀𝑦
∈ P ∀𝑧 ∈ P (𝑥<P 𝑦 → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)) |
73 | | df-iso 4275 |
. 2
⊢
(<P Or P ↔
(<P Po P ∧ ∀𝑥 ∈ P
∀𝑦 ∈
P ∀𝑧
∈ P (𝑥<P 𝑦 → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)))) |
74 | 1, 72, 73 | mpbir2an 932 |
1
⊢
<P Or P |