| Step | Hyp | Ref
| Expression |
| 1 | | ltpopr 7662 |
. 2
⊢
<P Po P |
| 2 | | ltdfpr 7573 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥<P 𝑦 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦)))) |
| 3 | 2 | 3adant3 1019 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑥<P 𝑦 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦)))) |
| 4 | | prop 7542 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ P →
〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈
P) |
| 5 | | prnminu 7556 |
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P ∧ 𝑞 ∈ (2nd
‘𝑥)) →
∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞) |
| 6 | 4, 5 | sylan 283 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ P ∧
𝑞 ∈ (2nd
‘𝑥)) →
∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞) |
| 7 | | prop 7542 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ P →
〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈
P) |
| 8 | | prnmaxl 7555 |
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ P ∧ 𝑞 ∈ (1st
‘𝑦)) →
∃𝑠 ∈
(1st ‘𝑦)𝑞 <Q 𝑠) |
| 9 | 7, 8 | sylan 283 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ P ∧
𝑞 ∈ (1st
‘𝑦)) →
∃𝑠 ∈
(1st ‘𝑦)𝑞 <Q 𝑠) |
| 10 | 6, 9 | anim12i 338 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ P ∧
𝑞 ∈ (2nd
‘𝑥)) ∧ (𝑦 ∈ P ∧
𝑞 ∈ (1st
‘𝑦))) →
(∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st ‘𝑦)𝑞 <Q 𝑠)) |
| 11 | 10 | an4s 588 |
. . . . . . . . 9
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))
→ (∃𝑟 ∈
(2nd ‘𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st ‘𝑦)𝑞 <Q 𝑠)) |
| 12 | | reeanv 2667 |
. . . . . . . . 9
⊢
(∃𝑟 ∈
(2nd ‘𝑥)∃𝑠 ∈ (1st ‘𝑦)(𝑟 <Q 𝑞 ∧ 𝑞 <Q 𝑠) ↔ (∃𝑟 ∈ (2nd
‘𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st ‘𝑦)𝑞 <Q 𝑠)) |
| 13 | 11, 12 | sylibr 134 |
. . . . . . . 8
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))
→ ∃𝑟 ∈
(2nd ‘𝑥)∃𝑠 ∈ (1st ‘𝑦)(𝑟 <Q 𝑞 ∧ 𝑞 <Q 𝑠)) |
| 14 | 13 | 3adantl3 1157 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → ∃𝑟 ∈ (2nd
‘𝑥)∃𝑠 ∈ (1st
‘𝑦)(𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) |
| 15 | | ltsonq 7465 |
. . . . . . . . . . . . 13
⊢
<Q Or Q |
| 16 | | ltrelnq 7432 |
. . . . . . . . . . . . 13
⊢
<Q ⊆ (Q ×
Q) |
| 17 | 15, 16 | sotri 5065 |
. . . . . . . . . . . 12
⊢ ((𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠) → 𝑟 <Q 𝑠) |
| 18 | 17 | adantl 277 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → 𝑟 <Q 𝑠) |
| 19 | | prop 7542 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ P →
〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∈
P) |
| 20 | | prloc 7558 |
. . . . . . . . . . . . . . . 16
⊢
((〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∈ P ∧ 𝑟 <Q
𝑠) → (𝑟 ∈ (1st
‘𝑧) ∨ 𝑠 ∈ (2nd
‘𝑧))) |
| 21 | 19, 20 | sylan 283 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ P ∧
𝑟
<Q 𝑠) → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧))) |
| 22 | 21 | 3ad2antl3 1163 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
<Q 𝑠) → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧))) |
| 23 | 22 | ex 115 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑟
<Q 𝑠 → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)))) |
| 24 | 23 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)))) |
| 25 | 24 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)))) |
| 26 | 18, 25 | mpd 13 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → (𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧))) |
| 27 | | elprnqu 7549 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ P ∧ 𝑟 ∈ (2nd
‘𝑥)) → 𝑟 ∈
Q) |
| 28 | 4, 27 | sylan 283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ P ∧
𝑟 ∈ (2nd
‘𝑥)) → 𝑟 ∈
Q) |
| 29 | | ax-ia3 108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ (2nd
‘𝑥) → (𝑟 ∈ (1st
‘𝑧) → (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
| 30 | 29 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ P ∧
𝑟 ∈ (2nd
‘𝑥)) → (𝑟 ∈ (1st
‘𝑧) → (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
| 31 | | 19.8a 1604 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑟 ∈ Q ∧
(𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))) →
∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
| 32 | 28, 30, 31 | syl6an 1445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ P ∧
𝑟 ∈ (2nd
‘𝑥)) → (𝑟 ∈ (1st
‘𝑧) →
∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))))) |
| 33 | 32 | 3ad2antl1 1161 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) → (𝑟 ∈ (1st ‘𝑧) → ∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))))) |
| 34 | 33 | imp 124 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → ∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
| 35 | | df-rex 2481 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑟 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑟 ∈
(1st ‘𝑧))
↔ ∃𝑟(𝑟 ∈ Q ∧
(𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
| 36 | 34, 35 | sylibr 134 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → ∃𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧))) |
| 37 | | ltdfpr 7573 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ P ∧
𝑧 ∈ P)
→ (𝑥<P 𝑧 ↔ ∃𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)))) |
| 38 | 37 | biimprd 158 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑟 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑟 ∈
(1st ‘𝑧))
→ 𝑥<P 𝑧)) |
| 39 | 38 | 3adant2 1018 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (∃𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑟 ∈ (1st ‘𝑧)) → 𝑥<P 𝑧)) |
| 40 | 39 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → (∃𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑟 ∈ (1st
‘𝑧)) → 𝑥<P
𝑧)) |
| 41 | 36, 40 | mpd 13 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) ∧ 𝑟 ∈ (1st ‘𝑧)) → 𝑥<P 𝑧) |
| 42 | 41 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑟
∈ (2nd ‘𝑥)) → (𝑟 ∈ (1st ‘𝑧) → 𝑥<P 𝑧)) |
| 43 | 42 | adantrr 479 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → (𝑟 ∈ (1st ‘𝑧) → 𝑥<P 𝑧)) |
| 44 | | elprnql 7548 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ P ∧ 𝑠 ∈ (1st
‘𝑦)) → 𝑠 ∈
Q) |
| 45 | 7, 44 | sylan 283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ P ∧
𝑠 ∈ (1st
‘𝑦)) → 𝑠 ∈
Q) |
| 46 | | pm3.21 264 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ (1st
‘𝑦) → (𝑠 ∈ (2nd
‘𝑧) → (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 47 | 46 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ P ∧
𝑠 ∈ (1st
‘𝑦)) → (𝑠 ∈ (2nd
‘𝑧) → (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 48 | | 19.8a 1604 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))) →
∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 49 | 45, 47, 48 | syl6an 1445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑠 ∈ (1st
‘𝑦)) → (𝑠 ∈ (2nd
‘𝑧) →
∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))))) |
| 50 | 49 | 3ad2antl2 1162 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) → (𝑠 ∈ (2nd ‘𝑧) → ∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))))) |
| 51 | 50 | imp 124 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → ∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 52 | | df-rex 2481 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝑧)
∧ 𝑠 ∈
(1st ‘𝑦))
↔ ∃𝑠(𝑠 ∈ Q ∧
(𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 53 | 51, 52 | sylibr 134 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦))) |
| 54 | | ltdfpr 7573 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ P ∧
𝑦 ∈ P)
→ (𝑧<P 𝑦 ↔ ∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)))) |
| 55 | 54 | biimprd 158 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ P ∧
𝑦 ∈ P)
→ (∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝑧)
∧ 𝑠 ∈
(1st ‘𝑦))
→ 𝑧<P 𝑦)) |
| 56 | 55 | ancoms 268 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑠 ∈
Q (𝑠 ∈
(2nd ‘𝑧)
∧ 𝑠 ∈
(1st ‘𝑦))
→ 𝑧<P 𝑦)) |
| 57 | 56 | 3adant1 1017 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (∃𝑠 ∈ Q (𝑠 ∈ (2nd ‘𝑧) ∧ 𝑠 ∈ (1st ‘𝑦)) → 𝑧<P 𝑦)) |
| 58 | 57 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → (∃𝑠 ∈ Q (𝑠 ∈ (2nd
‘𝑧) ∧ 𝑠 ∈ (1st
‘𝑦)) → 𝑧<P
𝑦)) |
| 59 | 53, 58 | mpd 13 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) ∧ 𝑠 ∈ (2nd ‘𝑧)) → 𝑧<P 𝑦) |
| 60 | 59 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ 𝑠
∈ (1st ‘𝑦)) → (𝑠 ∈ (2nd ‘𝑧) → 𝑧<P 𝑦)) |
| 61 | 60 | adantrl 478 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → (𝑠 ∈ (2nd ‘𝑧) → 𝑧<P 𝑦)) |
| 62 | 43, 61 | orim12d 787 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → ((𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 63 | 62 | adantlr 477 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) ∧ (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → ((𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 64 | 63 | adantr 276 |
. . . . . . . . . 10
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → ((𝑟 ∈ (1st ‘𝑧) ∨ 𝑠 ∈ (2nd ‘𝑧)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 65 | 26, 64 | mpd 13 |
. . . . . . . . 9
⊢
(((((𝑥 ∈
P ∧ 𝑦
∈ P ∧ 𝑧 ∈ P) ∧ (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦))) ∧ (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦))) ∧ (𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)) |
| 66 | 65 | ex 115 |
. . . . . . . 8
⊢ ((((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) ∧ (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦))) → ((𝑟 <Q 𝑞 ∧ 𝑞 <Q 𝑠) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 67 | 66 | rexlimdvva 2622 |
. . . . . . 7
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → (∃𝑟 ∈ (2nd
‘𝑥)∃𝑠 ∈ (1st
‘𝑦)(𝑟 <Q
𝑞 ∧ 𝑞 <Q 𝑠) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 68 | 14, 67 | mpd 13 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) ∧ (𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦))) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)) |
| 69 | 68 | ex 115 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → ((𝑞
∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 70 | 69 | rexlimdvw 2618 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 71 | 3, 70 | sylbid 150 |
. . 3
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → (𝑥<P 𝑦 → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦))) |
| 72 | 71 | rgen3 2584 |
. 2
⊢
∀𝑥 ∈
P ∀𝑦
∈ P ∀𝑧 ∈ P (𝑥<P 𝑦 → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)) |
| 73 | | df-iso 4332 |
. 2
⊢
(<P Or P ↔
(<P Po P ∧ ∀𝑥 ∈ P
∀𝑦 ∈
P ∀𝑧
∈ P (𝑥<P 𝑦 → (𝑥<P 𝑧 ∨ 𝑧<P 𝑦)))) |
| 74 | 1, 72, 73 | mpbir2an 944 |
1
⊢
<P Or P |