ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr GIF version

Theorem ltsopr 7397
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4214). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 7396 . 2 <P Po P
2 ltdfpr 7307 . . . . 5 ((𝑥P𝑦P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
323adant3 1001 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
4 prop 7276 . . . . . . . . . . . 12 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
5 prnminu 7290 . . . . . . . . . . . 12 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
64, 5sylan 281 . . . . . . . . . . 11 ((𝑥P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
7 prop 7276 . . . . . . . . . . . 12 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
8 prnmaxl 7289 . . . . . . . . . . . 12 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
97, 8sylan 281 . . . . . . . . . . 11 ((𝑦P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
106, 9anim12i 336 . . . . . . . . . 10 (((𝑥P𝑞 ∈ (2nd𝑥)) ∧ (𝑦P𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1110an4s 577 . . . . . . . . 9 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
12 reeanv 2598 . . . . . . . . 9 (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) ↔ (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1311, 12sylibr 133 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
14133adantl3 1139 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
15 ltsonq 7199 . . . . . . . . . . . . 13 <Q Or Q
16 ltrelnq 7166 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
1715, 16sotri 4929 . . . . . . . . . . . 12 ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → 𝑟 <Q 𝑠)
1817adantl 275 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → 𝑟 <Q 𝑠)
19 prop 7276 . . . . . . . . . . . . . . . 16 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
20 prloc 7292 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2119, 20sylan 281 . . . . . . . . . . . . . . 15 ((𝑧P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
22213ad2antl3 1145 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2322ex 114 . . . . . . . . . . . . 13 ((𝑥P𝑦P𝑧P) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2423adantr 274 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2524ad2antrr 479 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2618, 25mpd 13 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
27 elprnqu 7283 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
284, 27sylan 281 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
29 ax-ia3 107 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (2nd𝑥) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3029adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
31 19.8a 1569 . . . . . . . . . . . . . . . . . . . 20 ((𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3228, 30, 31syl6an 1410 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
33323ad2antl1 1143 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
3433imp 123 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
35 df-rex 2420 . . . . . . . . . . . . . . . . 17 (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) ↔ ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3634, 35sylibr 133 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))
37 ltdfpr 7307 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑧P) → (𝑥<P 𝑧 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3837biimprd 157 . . . . . . . . . . . . . . . . . 18 ((𝑥P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
39383adant2 1000 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4039ad2antrr 479 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4136, 40mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧)
4241ex 114 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
4342adantrr 470 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
44 elprnql 7282 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠 ∈ (1st𝑦)) → 𝑠Q)
457, 44sylan 281 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → 𝑠Q)
46 pm3.21 262 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (1st𝑦) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4746adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
48 19.8a 1569 . . . . . . . . . . . . . . . . . . . 20 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4945, 47, 48syl6an 1410 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
50493ad2antl2 1144 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
5150imp 123 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
52 df-rex 2420 . . . . . . . . . . . . . . . . 17 (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) ↔ ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5351, 52sylibr 133 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))
54 ltdfpr 7307 . . . . . . . . . . . . . . . . . . . 20 ((𝑧P𝑦P) → (𝑧<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5554biimprd 157 . . . . . . . . . . . . . . . . . . 19 ((𝑧P𝑦P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5655ancoms 266 . . . . . . . . . . . . . . . . . 18 ((𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
57563adant1 999 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5857ad2antrr 479 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5953, 58mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → 𝑧<P 𝑦)
6059ex 114 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6160adantrl 469 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6243, 61orim12d 775 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6362adantlr 468 . . . . . . . . . . 11 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6463adantr 274 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6526, 64mpd 13 . . . . . . . . 9 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑥<P 𝑧𝑧<P 𝑦))
6665ex 114 . . . . . . . 8 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6766rexlimdvva 2555 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6814, 67mpd 13 . . . . . 6 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑥<P 𝑧𝑧<P 𝑦))
6968ex 114 . . . . 5 ((𝑥P𝑦P𝑧P) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
7069rexlimdvw 2551 . . . 4 ((𝑥P𝑦P𝑧P) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
713, 70sylbid 149 . . 3 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦)))
7271rgen3 2517 . 2 𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))
73 df-iso 4214 . 2 (<P Or P ↔ (<P Po P ∧ ∀𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))))
741, 72, 73mpbir2an 926 1 <P Or P
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962  wex 1468  wcel 1480  wral 2414  wrex 2415  cop 3525   class class class wbr 3924   Po wpo 4211   Or wor 4212  cfv 5118  1st c1st 6029  2nd c2nd 6030  Qcnq 7081   <Q cltq 7086  Pcnp 7092  <P cltp 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-lti 7108  df-enq 7148  df-nqqs 7149  df-ltnqqs 7154  df-inp 7267  df-iltp 7271
This theorem is referenced by:  prplnqu  7421  addextpr  7422  caucvgprprlemk  7484  caucvgprprlemnkltj  7490  caucvgprprlemnkeqj  7491  caucvgprprlemnjltk  7492  caucvgprprlemnbj  7494  caucvgprprlemml  7495  caucvgprprlemlol  7499  caucvgprprlemupu  7501  caucvgprprlemloc  7504  caucvgprprlemaddq  7509  suplocexprlemmu  7519  lttrsr  7563  ltposr  7564  ltsosr  7565  archsr  7583
  Copyright terms: Public domain W3C validator