ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl2 GIF version

Theorem 3ad2antl2 1163
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl2 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl2
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 477 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl1 1156 1 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  fcofo  5871  cocan1  5874  acexmid  5961  caovimo  6158  ordiso2  7158  mkvprop  7281  ltpopr  7738  ltsopr  7739  addcanprleml  7757  addcanprlemu  7758  aptiprlemu  7783  seq1g  10640  dvdsmodexp  12191  muldvds1  12212  lcmdvds  12486  cnpnei  14776  upgrpredgv  15820
  Copyright terms: Public domain W3C validator