ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl2 GIF version

Theorem 3ad2antl2 1149
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl2 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl2
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 469 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl1 1142 1 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 969
This theorem is referenced by:  fcofo  5749  cocan1  5752  acexmid  5838  caovimo  6029  ordiso2  6994  mkvprop  7116  ltpopr  7530  ltsopr  7531  addcanprleml  7549  addcanprlemu  7550  aptiprlemu  7575  dvdsmodexp  11729  muldvds1  11750  lcmdvds  12005  cnpnei  12817
  Copyright terms: Public domain W3C validator