ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl2 GIF version

Theorem 3ad2antl2 1150
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl2 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl2
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 469 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl1 1143 1 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  fcofo  5752  cocan1  5755  acexmid  5841  caovimo  6035  ordiso2  7000  mkvprop  7122  ltpopr  7536  ltsopr  7537  addcanprleml  7555  addcanprlemu  7556  aptiprlemu  7581  dvdsmodexp  11735  muldvds1  11756  lcmdvds  12011  cnpnei  12859
  Copyright terms: Public domain W3C validator