| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ad2antl2 | GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantlr 477 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3adantl1 1155 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fcofo 5852 cocan1 5855 acexmid 5942 caovimo 6139 ordiso2 7136 mkvprop 7259 ltpopr 7707 ltsopr 7708 addcanprleml 7726 addcanprlemu 7727 aptiprlemu 7752 seq1g 10606 dvdsmodexp 12048 muldvds1 12069 lcmdvds 12343 cnpnei 14633 |
| Copyright terms: Public domain | W3C validator |