ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antl2 GIF version

Theorem 3ad2antl2 1162
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antl2 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3ad2antl2
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantlr 477 . 2 (((𝜑𝜏) ∧ 𝜒) → 𝜃)
323adantl1 1155 1 (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  fcofo  5843  cocan1  5846  acexmid  5933  caovimo  6130  ordiso2  7119  mkvprop  7242  ltpopr  7690  ltsopr  7691  addcanprleml  7709  addcanprlemu  7710  aptiprlemu  7735  seq1g  10589  dvdsmodexp  12025  muldvds1  12046  lcmdvds  12320  cnpnei  14609
  Copyright terms: Public domain W3C validator